
14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 157

An Approach to Argumentative Reasoning
Servers with Multiple Preference Criteria

Juan Carlos Teze1,2,3, Sebastian Gottifredi1,3,
Alejandro J. Garcia1,3 and Guillermo R. Simari1

1Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering (DCIC)

Universidad Nacional del Sur (UNS) - Alem 1253
(8000) Bah́ıa Blanca, Buenos Aires, Argentina

2Agents and Intelligent Systems Area, Fac. of Management Sciences,
Universidad Nacional de Entre Ŕıos (UNER)

(3200) Concordia, Entre Ŕıos, Argentina
3Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

e-mail:{jct,sg,ajg,grs}@cs.uns.edu.ar

Abstract. Argumentation is an attractive reasoning mechanism due to
its dialectical and non monotonic nature, and its properties of compu-
tational tractability. In dynamic domains where the agents deal with
incomplete and contradictory information, to determine the accepted or
warranted information, an argument comparison criterion must be used.
Argumentation systems that use a single argument comparison criterion
have been widely studied in the literature. In some of these approaches,
the comparison is fixed and in others the criterion can be replaced in a
modular way. In this work we introduce an argumentative server that
provides recommendations to its client agents and the ability to decide
how multiple argument comparison criteria can be combined. In the pro-
posed formalism, the argumentative reasoning is based on the criteria
selected by the client agents. As a result, a set of operators to combine
multiple preference criteria is presented.

1 Introduction

An essential characteristic of Multi-Agent Systems (MAS) is the modeling of the
interaction among agents. Agents in a MAS interact to perform tasks, that can
be collectively carried out by a set of agents or can be individually done by one
agent. Generally, deliberative agents reason using two types of knowledge: public
knowledge that is shared with other agents, and private knowledge that in part
come from their own perception of the environment; in [10] a client-server model
was proposed allowing the representation of both private and shared knowledge.

A defeasible argumentation system provides ways to confront contradictory
statements to determine whether some particular information can be accepted
or, using a technical term, warranted [9, 1, 6, 7]. The result of the argumentation
process leads to an answer involving many stages; the comparison of conflicting



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 158

arguments to decide which one prevails is a particularly important one. For this
reason, the definition of a formal criterion for comparing arguments becomes a
central problem in defeasible argumentation.

Argumentation systems using a single argument comparison criterion have
been widely studied in the literature [18, 9, 5, 15]. The argument comparison
criterion represents a fundamental part of an argumentation system because the
inferences an agent can obtain from its knowledge will depend on the criterion
that is used. In the literature of argumentative systems, several approaches use a
fixed comparison criterion embedded in the system and in others the criterion can
be replaced in a modular way. In [2, 11, 8], the authors also focused their works
in multiple criteria, however, in a different manner to the way is proposed in
this paper. The main contribution of this paper is to provide a framework where
several comparison criteria can be selected and combined for deciding which
argument prevails. Next, we show an example that will serve two purposes: to
motivate the main ideas of our proposal, and as a running example to be used
in the rest of the paper.

Example 1 Lets consider a hotel that has the following general information
about its clients:

- if a client travels alone and she does not want a jacuzzi included with the
room, the hotel does not recommend a junior suite,

- if a client travels alone and she wants a safe and a fridge included with the
room, the hotel recommends a junior suite,

- if a client plans a short stay and she does not want a jacuzzi with the room,
the hotel recommends a single room,

- if a client plans a short stay and she wants a fridge with the room, the hotel
does not recommend a single room,

- finally, if the hotel recommends a junior suite, it does not recommend a single
room,

Now, two clients (Joan and Michael) request a room to the hotel. Suppose that
for both clients provide the same information:

- each travels alone.

- each plans for a short stay trip.

- each wants a room with safe and fridge.

They also share the same criteria for selecting a room, i.e., comfort and
price; however, Joan and Michael combine them differently. For Joan the room
must satisfy both criteria of the comfort and price. But, Michael is more tolerant
and he expects that the room will meet at least one criterion, either comfort or
price. In this situation each client can receive contradictory recommendations.
This shows how the client’s criteria to select a room can be used to establish
which recommendation prevails. Since, each client combine the same criteria on
different ways, the results are different.



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 159

In [3], a framework to reason from multiple points of view on an inconsistent
knowledge base was proposed. In that formalism each preference is associated
with a context, and these contexts are totally ordered; consequently, the relation
among each preference is fixed by this ordering. In contrast to [3], our approach
does not depend on a fixed pre-ordering between preferences. Here we generalize
the way several preferences can relate to each other through a set of operators
used to combine them. In our approach, following a client-server model, the
client agent can decide, for instance, the order in which the criteria will be used.

Recommender systems [16, 17, 14] have become an important research area
in AI over the last decade. We focus on a particular form of implementing re-
commender systems called Recommender Servers that extends the integration
of argumentation and recommender systems to a MAS setting. Recommender
Servers are based on an implementation of DeLP [9] called DeLP-Server [10]. In
this paper we will introduce a defeasible logic programming recommender server
that gives to the clients the ability to decide how multiple argument comparison
criteria can be combined. A set of criteria-combination operators is proposed to
provide that capability.

The rest of the paper is structured as follows. Next, in Section 2 we will
present the necessary background introducing basic definitions and some works
that will be used in the rest of the paper; then, in Section 3 we will introduce a
preference based recommender server. To illustrate the formalism, in Section 4
we introduce an example in DeLP. Finally, in Section 5 we discuss related work
and offer our conclusions and the possible directions for our future work.

2 Background

In [10] an implementation of DeLP, called DeLP-server, has been presented; this
system provides an argumentative reasoning service for multi-agent systems. A
DeLP-server is a stand-alone application that stores a DeLP-program that is used
to answer client queries. To answer queries, the DeLP-server will use the public
knowledge stored and represented as Defeasible Logic Program complementing
it with individual knowledge that clients might send, thus creating a particular
scenario for the query. The information that modifies the public knowledge stored
in the DeLP-server is called context, denoted C.

In DeLP, knowledge is represented using facts, strict rules and defeasible
rules. Facts are ground literals representing atomic information or the negation of
atomic information using the strong negation “∼”. Defeasible Rules are denoted
L0 –≺ L1, . . . , Ln and represent defeasible knowledge, i.e., tentative information,
where the head L0 is a literal and the body{Li}i>0 is a set of literals. DeLP-
servers consider a restricted form of programs that do not have strict rules.



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 160

Example 2 Continuing with Example 1, let Ph be a DeLP-program that models
the described information about hotel clients;

Ph =



∼junior suite –≺ travel alone,∼jacuzzi.
junior suite –≺ travel alone, safe, fridge.

single room –≺ short stay,∼jacuzzi.
∼single room –≺ short stay, fridge.

∼single room –≺ junior suite.


The private pieces of information related to the client’s particular context will be
represented through the following DeLP-program:

CJoan = CMichael = Pc =


travel alone.
short stay.
fridge.
safe.


where CJoan is Joan’s particular context and CMichael is Michael’s particular
context. For this example, the contextual information is the same for both clients.

In [10], three operators for DeLP-programs were introduced to consider diffe-
rent ways in which the specific information of the clients is taken into account at
the moment of computing answers; these proposed operators would temporally
modify the public knowledge stored in the server just for obtaining the answer.
Here, our research is not focussed in these contextual operators, and we will use
the union operator ∪ as a simple context treatment operator.

Example 3 Consider Example 2.

Ph ∪ Pc = Pm =



∼junior suite –≺ travel alone,∼jacuzzi.
junior suite –≺ travel alone, safe, fridge.

single room –≺ short stay,∼jacuzzi.
∼single room –≺ short stay, fridge.

∼single room –≺ junior suite.

travel alone.

short stay.

fridge.

safe.


When reasoning with contradictory and dynamic information, DeLP builds ar-
guments from this program. An argument for a literal L is a minimal and non
contradictory set of defeasible rules such that thogheter with programs strict
knowledge that allows for the derivation of L. For a given program the set of all
posible arguments will be denoted as Args.



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 161

Example 4 Extending Example 3, from program P ′ two arguments can be built.
The argument A in favor of recommending a junior suite:

A =
{
junior suite –≺ travel alone, safe, fridge.

}
and the argument B in favor of not recommending a junior suite:

B =
{
∼junior suite –≺ travel alone,∼jacuzzi.

}
Given an argument A2 that is in conflict with the argument A1, in order to
decide which one prevails, these two arguments must be compared using some
criterion. For example, in [9], if the argument A2 is preferred to A1 w.r.t. the
comparison criterion, then A2 prevails and it will be called a proper defeater for
A1. If A1 is preferred to A2, then A2 will not be considered as a defeater for
A1, and A1 prevails. If neither argument is preferred over the other, a blocking
situation occurs, and we will say that A2 is a blocking defeater for A1. In a
blocking defeater situation between A2 and A1, both arguments are defeated.

A query is a literal Q, the set of all possible queries will be denoted Q. In [10],
several contextual queries were defined. These types of queries allow the inclu-
sion of private pieces of information related to the agents’ particular context to
be taken into consideration at the moment of computing the answers. In DeLP a
query Q is warranted from a program P if there exists a non-defeated argument
A supporting Q. To establish whether an argument A is a non-defeated argu-
ment, defeaters for A are considered. In turn, each defeater could be defeated,
generating a sequence of arguments called argumentation line.

To establish if the argument A is non-defeated, it is necessary to analyze all
argumentation lines that have A as its first element. For each argument may
there exist more a defeater; the presence of multiple defeaters for an argument
produces an argumentation lines ramification, giving rise a defeaters tree which
is called dialectical tree. Each path from the root to a leaf corresponds to one
different acceptable argumentation line. To establish the state of the argument in
the root, the dialectical tree is marked. Marking of a dialectical tree is a process
which will be done by making every node from the leaf to root. Leaf nodes in a
dialectical tree will be marked as “U”, an inner node will be marked as “D” iff
it has at least a child marked as “U”, and an inner node will be marked as “U”
iff each of its children is marked as “D”.

The process of argumentation finishes when DeLP-server returns an answer.
The answer for a query Q from a DeLP-program P is either: yes, if Q is wa-
rranted from P; no, if the complement of Q is warranted from P; undecided,
if neither Q nor its complement are warranted from P; or unknown, if Q is not
in the language of the program P.

3 Argumentative reasoning with multiple preferences

As we have stated, our focus of research here is formalizing a server model with
multiple comparison criteria. In first place, we will provide a conceptual guide to



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 162

address this issue by means of what we call a preference-based reasoning server,
or PRS for short. The proposed reasoning server will be integrated by five com-
ponents: a DeLP-program, a set of DeLP operators, a DeLP-interpreter, a set of
preference criteria, and a set of operators to combine preference criteria. The for-
mal definition of PRS will be introduced after the definition of its components.
Figure 1 shows the graphical representation of the proposed server.

DeLP program

DeLP

operators

Preference

criteria

PREFERENCE - BASED QUERY
Agent 1Agent 1

operators

DeLP interpreter

Criteria-combination

operators

Agent 3

Agent 2 PREFERENCE - BASED QUERY
Agent 2

PREFERENCE - BASED QUERY
Agent 3

Fig. 1. Preference-based reasoning server.

The figure depicts three client agents sending a contextual query, and the
main components of a preference-based reasoning server. These components will
be defined and explained below.

As we have said, given two arguments A1 and A2 in conflict it is necessary
to use a preference criterion to decide which argument prevails and if A1 is
the prevailing argument, A1 is said to be a defeater of A2. We will denote a
preference criterion with the letter C. A PRS will be integrated by a set of
preference criteria S = {C1,C2, . . . ,Cn}. Continuing with our running example,
we assume the criterion Ccomfort that favors “comfort” and the criterion Cprice

that favors “price”. For clarity purposes, these criteria are applied in a particular
application domain as showed in Section 4.

A preference criteria can be represented by a preference relation or a function.
For our convenience, we say that, given a set de arguments Args, a preference
criterion is a function C : Args × Args −→ {⊥,>}, obtaining > when the first
argument is preferred over the second, and ⊥ otherwise.

Usually, existing reasoning services based on defeasible argumentation make
use of a unique preference criterion that is an integral part of the inference mecha-
nism. A distinctive feature of our proposed server, is the capacity of combining
multiple preference criteria. To achieve this, the server will have available specific



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 163

operators to combine different criteria. Thus, we represent a criteria-combination
operator as θn where n represents its arity. Next, some examples of possible
operators will be introduced.

Example 5 Given two conflicting arguments A1,A2 ∈ Args and the preference
criteria C1,C2 ∈ S. Consider the following three binary operators applied to the
criteria C1,C2:

• the operator � is such that the expression C1 � C2 says the argument A1

prevails iff A1 is preferred to A2 for both preference criteria.

• the operator � is such that the expression C1 � C2 establishes that the argu-
ment A1 prevails iff A1 is preferred to A2 for at least one criterion.

• the operator � is such that the expression C1 � C2 says the argument A1

prevails iff A1 is preferred to A2 with respect to C1 and if not, it then checks
if A1 is preferred to A2 with respect to C2. That is, it returns the same result
to C1 � C2 but the order of evaluation is fixed and must be done by the server
in such order: first C1 and then C2.

These operators will be formally defined below.

We have introduced three possible operators, nevertheless, the available o-
perators will depend on the particular reasoning server. It is also possible to
define new operators that could have a particular behavior related to a specific
application; for instance, some operators could requiere sets of preference criteria,
meanwhile others can be used to enable or disable criteria. Moreover, depending
on their properties, these operators may be combined leading to more complex
expressions.

A contextual query has the particularity of including the client’s own infor-
mation and that information will be used by the server to compute an answer.
However, if the server uses the criteria chosen by a client agent, then it will
be necessary to adapt the structure of the context query to include them. The
change consists in expanding the contextual query with an expression indicating
to the server how to solve the query using the criteria selected by the client
agents.

A server will answer a query as long as the preference criteria and the criteria-
combination operators indicated by the client are part of a criteria-combination
expression, or cc-exp for short. We use E to denote the set of all possible criteria-
combination expressions.

Definition 1 (Criteria-combination expression) Let S a set of preference
criteria and Θ a set of criteria-combination operators. An expression E is a
cc-exp iff:

• E ∈ S or
• E = θn(E1, E2, . . . , En) where Ei is a cc-exp and θn ∈ Θ with arity-n.

(1 < i < n)

In an expression could arise two situations, either the expression is a preference
criterion, or the expression is an operator applied to a set of cc-exp.



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 164

Example 6 Consider the operators of Example 5. Given two conflicting argu-
ments A1,A2 ∈ Args and a set of preference criteria S1 = {C1,C2,C3,C4}. Two
possible case of criteria-combination expressions will be presented bellow.

E1 = ((C1 � C2) � C3).

E2 = ((C1 � C2) � (C3 � C4))

In E1, we will say that the argument A1 prevails over A2 iff it is preferred by
the criterion C3 and at least one of the rest of the criteria. In E1, the argument
A1 prevails over A2 iff it is preferred by both criteria, C1 and C2, or else by the
criteria C3 and C4.

Example 7 Consider Example 1 and the operators introduced in Example 5.
The criteria to select a room for Joan and Michael, respectively, will be repre-
sented by means of the following criteria-combination expressions:

EJoan = (Ccomfort � Cprice)

EMichael = (Ccomfort � Cprice)

Thus, the client agents can indicate how their queries have to be solved by the
server. For that reason, the cc-exp denoting how the client wants to use the server
preference criteria, will be included in the queries. This new type of contextual
query will be called preference-based query.

Definition 2 (Preference-based query) A preference-based query PQ is a
tuple [C, E,Q] where C is a particular context for PQ, E is a cc-exp, and Q is
a query.

Example 8 Going back to Example 2 and considering Example 7. Given the
query “junior suite”, two preference based queries can be built:

[CJoan , EJoan , junior suite]

[CMichael , EMichael , junior suite]

The criteria-combination expressions are solved by the inference mechanism.
In particular, the DeLP-interpreter of a PRS will be responsible of the proce-
ssing and answering of client queries. As defined next, a DeLP-interpreter will
be represented, in general, as a function such that given a program and a query,
returns the corresponding answer.

Definition 3 (DeLP-interpreter) Let P be the set of valid DeLP-programs,
E be the set of possible cc-exps and Q be the set of possible queries. A DeLP-
interpreter is a function I : P × E × Q −→ R, where R is the set of possible
answers for PRS, i.e., R = {no, yes, undecided, unknown}.

Given two conflicting arguments A1,A2 ∈ Args and a cc-exp E. To solve a
cc-exp the interpreter will use a function eval(E,A2,A1) such that its range is
{⊥,>} which correspond to the answers for a cc-exp given.



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 165

The application pattern of the preference criteria is established when pre-
ferences combination operators are defined. For instance, consider the set of
criteria-combination operators Θj = {�,�,�} presented in Example 5 and two
cc-exps Ei and Ej . The evaluation of each operator belonging to the set Θj may
be defined as:

i) eval(E,A2,A1) = C(A2,A1) if E = C, or

i) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > and eval(Ej ,A2,A1) =
>, or

ii) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > or eval(Ej ,A2,A1) = >,
or

iii) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > or else
eval(Ej ,A2,A1) = >, or

iv) ⊥ in other case.

Now we formally present the concept of preference-based reasoning server.

Definition 4 (Preference-based reasoning server) A Preference-based rea-
soning server is a 5-tuple PRS = 〈I,O,P,S, Θ〉, where I is a DeLP-interpreter,
O is a set of DeLP-operators, P is a DeLP-program, S is a set of preference cri-
teria, and Θ is a set of criteria-combination operators.

In Section 2 we stated that the focus of this paper is not on DeLP-operators;
we refer the interested reader to [10] for the details of these operators. Here our
approach is centred in the criteria-combination operators.

Definition 5 (Answer for a query) Let PRS = 〈I,O,P,S, Θ〉 be a preferen-
ce-based reasoning service, PQ = [C, E,Q] be a preference-based query for PRS,
and P ′ be a modified program for the context C, i.e., P ′ = P ∪ C. An answer
for PQ from PRS, denoted Ans(PRS, E,Q), corresponds to the result of the
function I(P ′, E,Q).

4 Application example

In this section we will show in an example in DeLP how the answer to a query can
vary according to the way in which the criteria used by the server are combined.
Let Ph and Pc be the DeLP-programs presented in Example 2;

Ph =


∼junior suite –≺ travel alone,∼jacuzzi.
junior suite –≺ travel alone, safe, fridge.
simgle room –≺ short stay,∼jacuzzi.
∼simgle room –≺ short stay, fridge.
∼simgle room –≺ junior suite.


CJoan = CMichael = Pc =


travel alone.
short stay.
fridge.
safe.





14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 166

Consider the preference-based queries introduced in Example 8;

1. [CJoan , EJoan , junior suite].

2. [CMichael , EMichael , junior suite].

such that

EJoan = (Ccomfort � Cprice).

EMichael = (Ccomfort � Cprice).

As state above, we consider the criterion Ccomfort that favors “comfort” and
the criterion Cprice that favors “price”; on the one hand, we assume that the
function Ccomfort will return > iff the first argument has as information that a
bedroom has fridge and safe, and ⊥ otherwise. On the other hand, the function
Cprice will return > iff the first argument has as information that the room has
not jacuzzi, and ⊥ otherwise.

In both queries mentioned above, the same DeLP Pm presented in Example 3
is obtained. As showed in Example 4, from the program Pm two arguments can
be built: the argument A in favor of recommending junior suite.
A =

{
junior suite –≺ travel alone, safe, fridge.

}
and the argument B in favor of not recommend junior suite.
B =

{
∼junior suite –≺ travel alone,∼jacuzzi.

}
Note that A and B are in conflict since they support contradictory conclu-

sions. To answer the query, it is necessary to determine which one prevails. For
this, we will use the function “eval”. Given the cc-exps EJoan and EMichael from
example 7, the possible results of comparing the arguments A and B using the
criteria Ccomfort and Cprice will be showed bellow:

- if “comfort” is used as criteria, then the function Ccomfort(A,B) = >.

- if “comfort” is used as criteria, then the function Ccomfort(B,A) = ⊥.

- if “price” is used as criteria, then the function Cprice(B,A) = >.

- if “price” is used as criteria, then the function Cprice(A,B) = ⊥.

Now that the results of comparing the arguments A and B are known, so
the results of the function “eval” for expressions EJoan and EMichael can be
obtained, in that case eval(EJoan ,B,A) = ⊥, eval(EMichel ,B,A) = > and
eval(EMichel ,A,B) = >.

Now, consider the first preference-based query presented above:

[CJoan , EJoan , junior suite]

Given that the function “eval” for the expression EJoan establishes that A is
preferred to B then A will defeat to B. Since there are other counterarguments
that could defeat A, then A remains undefeated. The conclusion junior suite is
warranted, then the answer for the preference-based query is yes. However, in
the following preference based query:



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 167

[CMichael , EMichael , junior suite]

if the whole argumentative process is considered, the answer for the query
junior suite is undecided, i.e., neither the conclusion junior suite nor its
complement are warranted.

The complete example shows that the same query with the same context but
with different combination of criteria can give different answers. This was our
goal.

5 Conclusions. Related and future work

We have presented a model that allows an argumentative reasoning server to
handle multiple preference criteria. For this, we formally defined the notion of
criteria-combination expressions, which use a set of criteria-combination opera-
tors. We have introduced three different operators, showing how these operators
are evaluated within the combination expressions; these expressions are used
by the client agents when performing queries to server. In our approach, DeLP
was proposed for knowledge representation and therefore the DeLP-interpreter
is in charge of solve these queries. To solve each conflict between arguments, the
DeLP-interpreter uses the function eval that determines which argument pre-
vails using the criteria-combination expressions contained in the queries. Thus,
queries are answered using public knowledge stored in the server, considering
the preference criteria indicated by the clients. In Section 4 an example in DeLP
is presented where an agent perform two queries with the same context but
with different preference criteria combinations getting different results. With the
proposed model we have shown that argument comparison criteria are directly
related to the inferences that can be obtained by an agent.

Our approach was in part inspired by [10], where several servers can be cre-
ated, and knowledge can be shared through them. Nevertheless, both approaches
have several differences. In contrast with us, they use a preference criteria em-
bedded in the interpreter, i.e., to answer a query the server is configured to
use the same specific criterion. Finally, we provide clients with the possibility of
selecting what criteria a server should use to compute the answer for a specific
query.

In [3] an approach to handle multiple preference was proposed. To determine
the acceptable arguments, the set of preferences is linearly ordered using another
preference relation. Their main contribution is to take into account contextual
preferences which means that several pre-orderings on the knowledge base may
be taken into account together, i.e., preferences which depend upon a particu-
lar context. Contextual preferences are given in terms of pre-orderings between
beliefs. In contrast with us, they provide a framework where the preferences are
ordered, in our framework this situation is a particular case, i.e., depending on
the criteria-combination operators defined in the server. On the other hand, sev-
eral approaches about combination of preference criteria can be found in [12, 4,
13].



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 168

As future work we are developing an implementation of a DeLP-server that
can dynamically handle multiple preference criteria. We are also interested in
studying the properties of the criteria-combination operators to define opera-
tors for concrete reasoning servers. Another extension will be to integrate our
proposed framework with others argumentative systems similar to DeLP.

References

1. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming frame-
work for possibilistic argumentation: Formalization and logical properties. Fuzzy
Sets and Systems 159(10), 1208–1228 (2008)

2. Amgoud, L., Bonnefon, J.F., Prade, H.: An argumentation-based approach to mul-
tiple criteria decision. In: ECSQARU. pp. 269–280 (2005)

3. Amgoud, L., Parsons, S., Perrussel, L.: An argumentation framework based on
contextual preferences. In: FAPR’2000. pp. 59–67 (2000)

4. Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining pref-
erence relations. J. Log. Comput. 12(1), 13–53 (2002)

5. Antoniou, G., Maher, M.J., Billington, D.: Defeasible logic versus logic program-
ming without negation as failure. J. Log. Program. 42(1), 47–57 (2000)

6. Capobianco, M., Chesñevar, C.I., Simari, G.R.: Argumentation and the dynamics
of warranted beliefs in changing environments. Autonomous Agents and Multi-
Agent Systems 11(2), 127–151 (2005)

7. Capobianco, M., Simari, G.R.: A proposal for making argumentation computation-
ally capable of handling large repositories of uncertain data. In: SUM. pp. 95–110
(2009)

8. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst.
28(4), 427–466 (2003)

9. Garcia, A., Simari, G.: Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming (TPLP) 4, 95–138 (2004)

10. Garćıa, A.J., Rotstein, N.D., Tucat, M., Simari, G.R.: An argumentative reasoning
service for deliberative agents. In: KSEM. pp. 128–139 (2007)

11. Godo, L., Marchioni, E., Pardo, P.: Extending a temporal defeasible argumentation
framework with possibilistic weights. In: JELIA. pp. 242–254 (2012)

12. Kaci, S.: Working with Preferences: Less Is More. Cognitive Technologies, Springer
(2011)

13. Kießling, W.: Foundations of preferences in database systems. In: VLDB. pp. 311–
322 (2002)

14. Konstan, J.A.: Introduction to recommender systems: Algorithms and evaluation.
ACM Trans. Inf. Syst. 22(1), 1–4 (2004)

15. Loui, R.P.: Defeat among arguments: a system of defeasible inference. Computa-
tional Intelligence 3, 100–106 (1987)

16. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible
reasoning systems. International Journal on Artificial Intelligence Tools 10(4), 483–
501 (2001)

17. Resnick, P., Varian, H.R.: Recommender systems - introduction to the special
section. Commun. ACM 40(3), 56–58 (1997)

18. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–
279 (1997)


