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Abstract. Image segmentation is a key competence for many real life
applications such as precision agriculture. In this work we present an
approach to classify agricultural fields in noisy satellite images. We start
with the Markovian neighborhood hypothesis from where on we derive a
general two-dimensional hidden Markov model (2D-HMM). To make the
2D-HMM feasible we apply the Path-Constrained Variable-State Viterbi
Algorithm (PCVSVA) which allows us to approximate the optimal hid-
den state map. We evaluate the PCVSVA for a Landsat image of the
province of Córdoba, Argentina and a synthetic satellite image. In both
cases we use Cohen’s κ̂ coefficient to compare the PCVSVA and the so-
lution obtained by maximum likelihood (ML) to show the effectiveness
of 2D-HMM of solving image segmentation tasks.
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1 Introduction

The observation of agricultural regions via satellite images is a standard tool of
Precision agriculture. One of the most important tasks of the so called satellite
farming is to find intra-field variations in order to optimize yields [1]. The first
step of this and many other applications [2], [3] is to segment and classify a given
satellite image. In this work we study the capability of two-dimensional hidden
Markov models (2D-HMM) to classify satellite images with a low signal-to-noise
ratio.

Recently hidden Markov models (HMM) have gained the attention of re-
searchers from different fields. Still the classical HMM are generally limited to
those areas where the observed data has only one dimension such as speech
recognition [4] or the analysis of genome data [5]. There have been early at-
tempts to use HMM for higher-dimensional tasks like image segmentation but
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only for the price of previously converting the two-dimensional data of an image
into a single vector by lining up the rows or the columns of the image [6]. The
drawback of such an ordering is clearly the loss of information because adjacent
pixels in the original image are torn apart.

In the last years efforts were made to extend the classical one-dimensional
HMM to higher dimensions [7]. The problem hereby is, that the standard method
of parameter estimation for one-dimensional HMM, the Baum-Welch Algorithm
[8], is not feasible for higher dimensions. Hence, the main issue is to reduce the
computational complexity in order to keep the n-dimensional HMM feasible.

The firsts attempts to extend the HMM framework to two dimensions were
the so called pseudo 2D-HMM. Pseudo 2D-HMM use superstates to represent
the rows of an image, while the columns are connected by a simple Markov Chain
[9]. Later the Viterbi Algorithm was applied to obtain a feasible version of a true
2D-HMM [10, 11].

In this work we compare the Path-Constrained Variable-State Viterbi Al-
gorithm (PCVSVA) as presented by [12] with the solution obtained from ML.
Note, that the classification of an image with ML does not consider any contex-
tual prior. A detailed description of ML is given in algorithm 1.

Algorithm 1 Maximum Likelihood Classification

Unsupervised Maximum Likelihood classification of image I: To assign the label given
by

sij = argmax
`∈L

p(Iij |`)

to pixel (i, j), with parameters given by the Expectation Maximization algorithm for
Gaussian Mixtures, with random initializations.

The PCVSVA is a well established 2D-HMM algorithm for image segmenta-
tion, still it has never been used to solve to agricultural classification problems.
Therefore the main contributions of this work are a complete description of the
algorithm including all formulas and an experimental study if the PCVSVA can
be applied for precision agriculture tasks. Like most 2D-HMM approaches the
PCVSVA has shown good results for noisy images that can be considered a
Gaussian mixture Markov random field [10]. For that reason we use two real
world satellite images with a low signal-to-noise ratio and a synthetic image to
evaluate the PCVSVA.

This paper is organized as follows: In section 2 we present the mathematical
background of a 2D-HMM and explain why further assumptions are necessary
to make 2D-HMM feasible. Thereafter we present a feasible approximation of
a complete 2D-HMM in section 3, namely the PCVSVA. In section 4 we eval-
uate the results of PCVSVA and ML for the test images using Cohen’s Kappa
coefficient [13]. Finally we discuss the results in section 5.
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2 Theory of two-dimensional Hidden Markov Models

Two-dimensional data – like the pixels of an image – can be handled by a 2D-
HMM if we assume the data to be a Markov Random Field. This means, that,
given the image, the hidden state of pixel (i, j) is conditionally independent of
the pixels outside a certain neighborhood. For pixel (i, j) we define (i

′
, j
′
) ≺ (i, j)

if i
′
< i or i

′
= i and j′ < j. It can be shown that this definition leads to a 2nd

order Markov Mesh which specifies for state si,j :

P (si,j |si′ ,j′ : (i
′
, j
′
) ≺ (i, j)) = P (si,j |si,j−1, si−1,j).

In figure 1 the relevant pixels of the 2nd order Markov Mesh are shown. The
two pixels (i, j− 1) and (i− 1, j) can be understood as the “past” of pixel (i, j).
In other words we are moving from the top-left pixel to the bottom-right pixel.
Hence, the initial probabilities for the 2D-HMM depend only on the first state
s0,0 and we can write

πl = P (s0,0 = l) ∀l ∈ S.

Next, we assume that the observed pixel intensities of one class are normally
distributed. For the sake of completeness let us consider multispectral images
where each pixel is a vector fromRk so we can calculate the emission probabilities
of state l ∈ S with mean µl and covariance matrix Σl:

bl(x) = P (x|si,j = l)

=
1

(2π)k/2|Σl|1/2
exp

{
−1

2
(x− µl)TΣ−1l (x− µl)

}
Besides that, we consider P (si,j |si,j−1, si−1,j) to be independent of the cur-

rent pixel so we can gather the transition probabilities in a matrix A where

am,n,l = P (si,j = l|si,j−1 = m, si−1,j = n).

These assumptions are the basis on which we try to find the optimal hidden
state map s∗

s∗ = arg max
s

P (s|O, θ). (1)

where O are the observations and s is any admissible hidden state map. In θ
we gather all the parameters of a 2D-HMM which are: the means and standard
deviations of each hidden state and the transition probabilities A.

The exact formulas for the parameters are:

µm =

∑
i,j Lm(i, j)ui,j∑
i,j Lm(i, j)

; (2)

Σm =

∑
i,j Lm(i, j) (ui,j − µm) (ui,j − µm)

T∑
i,j Lm(i, j)

(3)
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am,n,l =

∑
i,j Hm,n,l(i, j)∑M

l′=1

∑
i,j Hm,n,l′ (i, j)

(4)

where L and H are defined as

L(p)
m (i, j) =

∑
s

I(m = si,j)
1

α
I(C(s) = c) ×

∏
(i′ ,j′ )∈N

a(p)s
i
′−1,j

′ ,s
i
′
,j
′−1

,s
i
′
,j
′ ×

∏
(i′ ,j′ )∈N

P
(
ui′ ,j′ |µ

(p)
s
i
′
,j
′ , Σ

(p)
s
i
′
,j
′

)

H
(p)
m,n,l(i, j) =

∑
s

I (m = si−1,j , n = si,j−1, l = si,j) ×
1

α
I (C(s) = c)×∏

(i′ ,j′ )∈N

a(p)s
i
′−1,j

′ ,s
i
′
,j
′−1

,s
i
′
,j
′ ×

∏
(i′ ,j′ )∈N

P
(
ui′ ,j′ |µ

(p)
s
i
′
,j
′ , Σ

(p)
s
i
′
,j
′

)
Note, that L and H are sums over all possible state maps. Thus, for an image
of size (w× z) with M hidden states S = {1, 2, . . . ,M} there are Mw∗z possible
hidden state maps. This huge number of state maps, even for small images, leads
to infeasibility because L and H can not be calculated.

To solve the problem of computational complexity several algorithms were
proposed in recent years [10], [11]. Almost all of them apply the Viterbi Algo-
rithm in some form [14]. In the next section we describe an advanced version of
the Viterbi Algorithm, the Path-Constrained Variable-State Viterbi Algorithm
[12].

(i,j)(i,j-1)

(i-1,j)

Fig. 1. Transitions among states in a 2nd order Markov Mesh. The gray and the black
pixels fulfill (i

′
, j
′
) ≺ (i, j) but the two black pixels are sufficient statistics for pixel

(i, j) under the Markov assumption.
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3 Path-Constrained Variable-State Viterbi Algorithm

In this section we introduce a feasible version of the general 2D-HMM, namely
the PCVSVA. Note, that due to the assumptions made, the PCVSVA only ap-
proximates the optimal hidden state map as defined by equation 1.

Based on the theoretical foundations from section 2 the PCVSVA can be
derived as follows. First of all remember our notion of “past” as shown by figure
1. We now consider each diagonal of the image as one step in time, starting with
the top-left pixel. Thus, the diagonals T0, T1, T2 . . . are

T0 = (s0,0); T1 = (s1,0, s0,1); T2 = (s2,0, s1,1, s0,2); . . .

Because we are dealing with a 2nd order Markov Mesh we can make the Markov
assumption and get

P (s) = P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3, . . . , T0)

= P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3).
(5)

Note in equation 5, that each diagonal operates as an “isolating” element between
neighboring diagonals. Hence, we have transformed the complex two-dimensional
model to a pseudo one-dimensional HMM. The problem we are facing here, is
that each diagonal consists of up to min(w, z) states: T0 ∈ S, T1 ∈ S2, T2 ∈
S3, . . . , Tz+w−2 ∈ S.

From now on we denote each combination of states on one diagonal a se-
quence. Keep in mind that a diagonal can have up to Mmin(w,z) sequences – a
number generally too high to be feasible.

The first step to simplify the computation of the 2D-HMM is to reduce
the number of sequences on each diagonal to N . If we set N to a value much
smaller than Mmin(w,z) we have drastically reduced the computational burden,
but the question arises: How do we select the N sequences? For the moment we
assume that we can evaluate the posterior of a given diagonal state sequence by
simply multiplying the posteriors of each pixel without considering statistical
dependencies between pixels, i.e.

P (si,j = l|Oi,j , θ) ∝ P (Oi,j |si,j = l, θ)P (si,j = l|θ).

By doing so it is computationally easy to classify the possible sequences as more
or less probable. Once we have evaluated the posteriors of all sequences of one
diagonal we keep the most likely N sequences and forget about the rest. This is
clearly a significant simplification but even though we run the risk of throwing
away the sequence that belongs to the optimal hidden state map s∗ we expect
to keep at least some sequences that are close to the optimal one.

After cutting the number of state sequences on each diagonal down to N we
are ready to run the Viterbi Algorithm. We call each diagonal state sequence
sd,k where d is the index for the diagonal with d = 0, 1, . . . , z + w − 2 and
k = 1, 2, . . . , N indicates the state sequence. The initial state probabilities π̃k
for pixel (0, 0) are

π̃k = P (T0 = s0,k).
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Fig. 2. Example of Path-Constrained Variable-State Viterbi Algorithm for two possible
states and N = 3. a) Complete Viterbi Algorithm. b) Viterbi Algorithm constrained
to 3 paths per diagonal. c) Finding the most probable combination of diagonals.
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We denote δd(l) the maximum joint probability of the observations O0, . . . ,Od

and sequences from T0 to Td, where l is a certain sequence on diagonal d . Given
the parameters of the 2D-HMM we can write

δd(l) = max
k0,...,kd−1

P (s0,k0 , . . . , sd−1,kd−1
, sd,l,O0, . . . ,Od|θ),

for d = 0, . . . , z + w − 2; l = 1, . . . , N.
(6)

Furthermore we collect the pixels on diagonal d in a variable ∆(d) and define

bsd,k(Od) =
∏

(i,j)∈∆(d)

bsd,k(i,j)(Oi,j) (7)

where bsd,k(Od) is the emission probability of sequence k on diagonal d under
the assumption that each pixel is statistically independent from its neighbors.
Finally we can calculate the transition probability from sequence k on diagonal
d to sequence l on diagonal d+ 1:

ãd,k,l = P (Td+1 = sd+1,l|Td = sd,k, θ)

=
∏

(i,j)∈∆(d+1)

asd,k(i−1,j),sd,k(i,j−1),sd+1,l(i,j)

for d = 0, . . . , z + w − 3; k, l = 1, . . . , N.

(8)

Now we are ready to initialize the Viterbi Algorithm with the values

δ0(k) = P (T0 = s0,k), bs0,k(O0) = π̃jbs0,j (O0,0)

∀k = 1, 2, . . . , N.

Then we start the recursion using equations 6, 7 and 8

δd+1(l) =

[
max

1≤k≤N
δd(k)ãd,k,l

]
bsd+1,l

(Od+1)

∀d = 0, 1, . . . , z + w − 3 ∀l = 1, 2, . . . , N.

After each step we save the index of the most probable sequence on diagonal d
that leads to sequence l on diagonal d+ 1 in a variable called ϕ:

ϕd+1(l) = arg max
1≤k≤N

{δd(k)ãd,k,l}

∀d = 0, 1, . . . , z + w − 3 ∀l = 1, 2, . . . , N

When the algorithm reaches the last diagonal we use the values saved in ϕ to
track back the most probable path through the image starting with the bottom-
right pixel

s∗z+w−2 = arg max
1≤k≤N

δz+w−2(k)

s∗d = ϕd+1(s∗d+1) ∀d = z + w − 3, z + w − 4, . . . , 1
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The final result s∗ contains the optimal path through the N sequences at each
diagonal. Note that this is equal to knowing the complete hidden state map for
the whole image. In figure 2 an example of the PCVSVA is shown.

Once we know the hidden state of every pixel we can update the parameters
of the 2D-HMM. Instead of the exact formulas 2, 3 and 4 we use approximate
formulas for iteration step p, where I(·) is the indicator function. One can think
of these simplified formulas as “count instead of evaluate”:

µ
(p)
l =

∑z−1
i=0

∑w−1
j=0 I

(
s
(p−1)
i,j = l

)
Oi,j∑z−1

i=0

∑w−1
j=0 I

(
s
(p−1)
i,j = l

) (9)

Σ
(p)
l =

∑z−1
i=0

∑w−1
j=0 I

(
s
(p−1)
i,j = l

)
(Oi,j − µl)(Oi,j − µl)T∑z−1

i=0

∑w−1
j=0 I

(
s
(p−1)
i,j = l

) (10)

a
(p)
n,m,l =

∑z−1
i=1

∑w−1
j=1 I

(
s
(p−1)
i−1,j = n, s

(p−1)
i,j−1 = m, s

(p−1)
i,j = l

)
∑z−1
i=1

∑w−1
j=1 I

(
s
(p−1)
i−1,j = n, s

(p−1)
i,j−1 = m

) (11)

After updating a, µ and Σ we run the PCVSVA with the new parameters
and iterate until convergence. In summary we can describe the algorithm of the
2D-HMM as

1. set initial values for µl and Σl for l ∈ S
2. assign maximum a posteriori state to each pixel
3. calculate an,m,l for every n,m, l ∈ S using equation 11
4. Path-Constrained Variable-State Viterbi Algorithm
5. update an,m,l, µl and Σl using equations 9, 10 and 11
6. if no convergence of parameters go back to 4.

In this algorithm step 4 will take O(w2M2) time for an image of size w × w
whereas step 5 requires no remarkable computational effort. In section 5 we
compare the complexity of the PCVSVA and other characteristics with a new
algorithm that we present in the next section.

4 Experimental results: Image segmentation

In this section we present the experimental results. The proposed algorithms,
PCVSVA and ML, are implemented and executed in Matlab. To evaluate the
PCVSVA we use Cohen’s κ̂ coefficient [13] which is defined as

κ̂ =
PO − PE
1− PE

.

where PO =
∑k
i=1 pii is the relative observed agreement among segmented image

and ground truth and PE =
∑k
i=1 pi+p+i is the hypothetical probability of

chance agreement.
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Fig. 3. Part of a Landsat image and the corresponding ground truth.

We propose three different scenarios to evaluate the PCVSVA. First we use
the Landsat 7 image 229 − 082, that shows a region five kilometers west of
Ŕıo Primero in the Province of Córdoba. The image shows agricultural fields of
different sizes and orientations and two center-pivot irrigations as well as a road.
The studied region has a extension of 12 by 12 kilometers.

In this case an agricultural producer from the region provided information
about the classes of some of the fields shown in the satellite image. Then we
determined the exact borders of the fields running edge detection software in
Matlab. As we have no information about the other fields shown in the image we
leave them out for the classification as shown in figure 3. The goal is to distinguish
the different types of fields in the satellite image. With this information one can
compare fields and find irregularities like a reduced or advanced growth in some
parts.

Because we have no information of how many classes the image is composed
we evaluate the PCVSVA and ML for 3 to 8 classes. The κ̂ index of such seg-
mentations are shown in figure 5, higher values (closer to one) indicates better
segmentations, the curve indicates that 8 classes have the best segmentation
qualification for PCVSA, meanwhile the more classes are added the worse the
segmentation when applying ML. The actual segmentations are shown in figure
4.

We also test PCVSVA performance on a synthetic image. We added 5 levels of
Gaussian noise to the image, and tested performance of the algorithm computing
kappa values while initializing with supervised ML and unsupervised EM-ML.

The ground truth of this synthetic image and two implementations - the low-
est and the highest noise level - can be seen in figure 6. The segmentation outputs
of this experiment are shown in figure 7. Automatic initialization produces a dirty
looking segmentation, while supervised ML as initialization helps the algorithm
deliver a better segmentation. In figure 8 we show the κ̂ values computed over
the segmentations in both cases, supervised and unsupervised. Note, that for the
synthetic image, as well as for the satellite image, the PCVSVA outperforms the
segmentation achieved by ML. The difference between the κ̂ values is smaller
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ML PCVSVA

3 classes

4 classes

5 classes

6 classes

7 classes

8 classes

Fig. 4. Segmentation results for three to eight classes of the PCVSVA and ML for the
Landsat 7 image 229− 082, that shows a region five kilometers west of Ŕıo Primero in
the Province of Córdoba
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Fig. 5. Results of the segmentation of a Landsat image. The PCVSVA is clearly supe-
rior to the ML approach for real life data.

Fig. 6. a) Ground truth of the synthetic satellite image. This image contains different
kinds of fields (red, green, yellow), water regions (blue) as well as a street (black). b)
Synthetic image observed at a very low noise level. c) Synthetic image observed at a
very high noise level.
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for the synthetic image, which was designed as a Gaussian mixture. Markovian
models have better fit in real imagery, but they should be at least as good as
ML under i.i.d conditions.

Fig. 7. Results of the segmentation of a synthetic image. a) Low noise level, unsuper-
vised. b) High noise level, unsupervised. c) Low noise level, supervised. d) High noise
level, supervised.

Fig. 8. Results of the segmentation of a synthetic image. On the left the initial param-
eters are found by running the Expectation Algorithm whereas on the right a training
sample is used to initialize the PCVSVA.

Finally we show the results of PCVSVA and ML for a Landsat 7 image
taken from a region two kilometers north of Arroyito. The Landsat number of
the image is 228 − 082. There is no ground truth available so we just show the
results of both algorithms in figure 9. In the next section we discuss the results
and draw conclusions about image classification with the PCVSVA.
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Original

ML PCVSVA

3 classes

4 classes

5 classes

6 classes

Fig. 9. Segmentation results of PCVSVA and ML methods for a Landsat 7 image
taken from a region two kilometers north of Arroyito showing an agricultural region.
The Landsat number of the image is 228− 082.
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5 Conclusions

The classification algorithm presented in this work is based on the theory of
Markov random fields. This means, that the state of each pixel depends not only
on its gray value, but also on the hidden states in its neighborhood. Therefore it
is valid to compare the PCVSVA with the ML solution, where the hidden states
depend only on the observed gray values.

The experiments show the superiority of the 2D-HMM approach with respect
to ML, especially for real life images. In the case of the synthetic image, the gap
between PCVSVA and ML is much smaller – probably due to the design of
experiment, which is a true Gaussian mixture. Nevertheless, the percentage of
improvement over ML is always positive.

When it comes to computational resources, the PCVSVA reveals its weak
point. While ML usually segments an image within seconds, the PCVSVA needed
more than one hour for each of the shown images on a PC with i3 processor.
Nevertheless, PCVSVA has the advantage of decoding selecting the best state’s
diagonal from a bag of sequences. A quick glance to the segmentation can be
made using the most probable 50 sequences, which reduces running time to 15
minutes. Our code was made from scratch, on Matlab 2013a platform, and allows
us to control all the routines involved in decoding. Another important point to
add to our code is that it handle multivariate data coming from several classes.
To our knowledge, this is the only one Matlab implementation of a Markovian
labeling method based on Hidden Markov Models.

Despite the inevitable computational burden that bring 2D-HMM, we can
conclude that the PCVSVA is capable of classifying agricultural fields in satellite
images. Thereby it is important to mention, that the presented algorithm is
robust to variations of the number of classes, as we have shown in the Landsat
experiment. Besides that, the PCVSVA does not depend on the geometric shapes
of the classified objects. Round objects like pivot irrigations are classified, as
well as agricultural fields of any kind and shape. In summary, we have presented
an algorithm, that has a consistent mathematical justification and shows good
results for real life data. An issue for future works is to reduce the computational
burden of the PCVSVA in order to make this algorithm easier to handle for users.
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