14th Argentine Symposium on Software Engineering, ASSE 2013

A Software Tool for Selection and I ntegrability
on Service Oriented Applications

Martin Garriga®, Alan De Renzis Andres Flore's®
Alejandra Cechich Alejandro Zuniné?

LGIISCo Research Group, Facultad de Informatica, Usisted Nacional del Comahue,
Neuquén, Argentina.
[martin.garriga, andres.flores, alejanda.cechich]@fai.uncoma.edu.ar, derenzis.alan@gmail.com
ZISISTAN Research Institute, UNICEN,
Tandil, Argentinaazunino@isistan.unicen.edu.ar,
3 CONICET (National Scientific and Technical Researchr@)y Argentina.

Abstract. Connecting services to rapidly developing serviderged
applications is a challenging issue. Selection aéqaate services implies to
face an overwhelming assessment effort, even wittdaced set of candidate
services. On previous work we have presented aroapp for service selection
addressing the assessment of WSDL interfaces amdexpected execution
behavior of candidate services. In this paper vesgmt a plugin for the Eclipse
IDE to support the approach and to assist deveddpily tasks on exploring
services integrability. Particularly for behaviocampatibility we make use of
two testing frameworks: JUnit and MuClipse to ackievcompliance testing
strategy.

Keywords: Service oriented Computing, Component-based Soft&aggnee-
ring, Web Services, Software Testing.

1. Introduction

Service-oriented applications development impliedbusiness facing solution
which consumes services from one or more providexs integrates them into the
business process [1,2]. From an architectural petsge developing service-oriented
applications involve to reuse existing third-pagdgmponents or services that are
invoked through specialized protocols. Particulattiy industry has adopted the Web
Services technology [3], which leads to a concré¢eentralization of business
processes and a low investment on new technologies execution platforms.
However, the efficient reuse of existing Web Sessics still a major challenge. After
searching for candidate services, a developerrstjuires high skills to deduce the
most appropriate service to be selected from thefseandidates, for the subsequent
integration tasks. Even with a reduced set of sesyithe required assessment effort
could be overwhelming. Besides, the set of meaningfoperties to explore on
candidates also involve the required adaptationsafaorrect integration allowing
client applications to safely consume services avi@habling loose coupling for
maintainability.

* This work is supported by projects: ANPCyT-PAE-PI2007-02312 and UNCo-DSBR
(04-F001)

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 96

14th Argentine Symposium on Software Engineering, ASSE 2013

In order to ease the development of service-orikafgplications we presented on
previous work [4,5] a proposal fagervice selection which is based on a recent
approach [6] that was initially developed to worlithvsoftware components as a
solution for substitutability of component-basedteyns. The approach was properly
adjusted and extended to be applied in the coofesérvice-oriented applications.

The selection methodcomprises two assessment procedures: Irgerface
Compatibilityanalysis and Behavioral Compatibilityevaluation. The former is made
at a syntactic level, by means of a comprehengsiherse to evaluate the interface
provided by candidate services. The latter is based specificTest Suit§TS) which
has been designed from a particular selectionspinig coverage criteria, to achieve a
behavior dynamic representation of services, vBehavioral Test Suite.

In this paper we present the architecture of anso# tool, which supports the
development of service-oriented applications. Intipalar, we have developed the
tool support as a plug-in for the Eclipse DB agile developers’ daily tasks through
an environment that provides a way to integratiedifit tools to improve developers’
productivity and code quality. As Eclipse has bedopted as the most popular IDE
nowadays, adding new functionality as a plugin oeguthe learning curve of
developers. Besides, from an organizational so&vpaoduction perspective, software
vendors are keen to benefit from the increasedymtddty and quality that a good
IDE promises to deliver [8].

The paper is organized as follows. Section 2 prtssam overview of the Selection
Method and the architecture of the Plug-in. Sect®rfocuses in the Interface
Compatibility analysis, and Section 4 details treh&vior Compatibility evaluation.
Finally, Section 5 presents the Related Work, wlitenclusions and future work are
presented afterwards.

2. Service Selection M ethod

During the development of a service-oriented apgitim, a developer may decide
to implement specific parts of a system in the fofrim-house components. However,
the decision could also involve the acquisitiontlifd-party components, which in
turn could be solved with the connection to Webvisess. When many candidate
services are discovered a developer still needsleduce the most appropriate
candidateFig. 1 depicts the proposal intended to assist develapettse process of
selectionof Web services, which is briefly described asofof:

The selection methodequires the definition of a simple specificati@mthe form
of a required interfacég) as input for its two main assessment procedures.
Interface Compatibility evaluatiorstep 1.} is based on a comprehensive Assessment
Scheme to recognize direct (strong) and potentiatchings between a required
interface [g) and the interface provided by a candidate ser{lige The outcome of
this step is arinterface Matchinglist where each operation frolg may have a
correspondence with one or more operations figmIf some mismatching is
detected, a developer may apply a solution thraughmi-automatic procedurstép

T Integrated Development Environment (IDE)

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 97

14th Argentine Symposium on Software Engineering, ASSE 2013

1.2). The same step can also be used to set up aediffmatching for some operation
of I, even when an initial matching had been initiadigntified [4].

The Behavioral Compatibility evaluation is intendedanalyze the execution of
candidate services by means of a Behavioral Tegie UWS), which is built to
represent behavioral aspects from a third-partywicer For this evaluation, the
Interface Matchinglist produced in the previous step is processed, @ set of
wrappers (adapter¥Y is generatedsfep 3, where remote invocations tgare solved
through a proxy Rs) derived from service’s WSDL description. Thuscandidate
service is evaluated by executing the TS against wa/7 W (step 3, where at least
70% successful tests must be identified on somepenato confirm a behavioral
compatibility [5]. Besides, such successful wrapgleyws an in-house component to
safely call the candidate service once integratema client application.

!
|
|
i
! Eenace Specification et of discovered
|
|
|
|
i

[J2wva Required Interface) candidzre Web Ssnaces
{Java Interfzce from WELDL)

S S 5 | @
Senace-Onented Applicstion
Interdface Compstibiliy
{automatic step)

Integration of
selected candidat @
Wish Sar Assessmeni Scheme

{zutomatic steg) [Direct + Pofential) g

TS Service Wrapper = [,' l |
® j — O

Testing-based Behavior Compatibiling
(s=mi-sutomstic step)

lving Missmaiches
[semi-automatic stap}

Generstion of Wrappers
{sutomatic step)

| Keys: ¢ | =Spachcation of Aeguired Servce L} =Caakate s Servce
T s

Fig. 1. Service Selection Method

Next section describes the software architecturth@fsupporting tool. A simple
example will be used to illustrate the usefulndshe Selection Method.

2.1. Software Tool Architecture

In order to provide support for the Selection Methee have developed a
software tool into the Java language, which hapttbthe form of a plug-in for the
Eclipse IDE. In this way, developers are providethvan augmented environment, in
which building service-oriented applications is nassisted by an automated and
guided process easing evaluation and selectionedf $érvices.

Fig. 2 depicts the plug-in's software architecture, inchha central component is
the Testing Meta-Modela Java representation of the OMG UML Testing ird9]
that is used to build th&ehavioral TS In addition, both checker components:

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 98

14th Argentine Symposium on Software Engineering, ASSE 2013

Interface CompatibilityandBehavior Compatibilitynake use of the meta-model as a
way to manage, store and assess the structurendidede services’ specifications
(static and dynamic aspects).

User Interface J
Interface Compatibility Behavior Compatibility
Checker) Checker
: " Converter Interface Service Testi
WSDL Assessment Wrappers Execu[:gr
to Java Scheme | Generator

Sen.rlce Compaliblllw ‘ F\.Hl':_‘ = JU JUnit E'-“} MuCIipse
Reposito Resulis Apache Framework || Framework

Fig. 2. Software Architecture of Plug-in for Eclipse IDE

The Interface Compatibility Checkeareceives as input a Java required interface
(Il and a set of WSDL files of candidate serviced from the (remote)
ServiceRepositoryrrom those WSDL files a set of Java interfadgsafe derived by
the Convertercomponent, which is based on tApache AxisZAramework. After
applying theinterface Assessment Scheimeir Resultsare properly stored and shown
in a User Interfacés view. TheBehavior Compatibility Checkenakes use of those
Resultsas input for theService Wrappers Generatowhere theAxis2 framework is
used to build a service proxiPd) to allow safe execution of an evaluated candidate
(9). Then theTesting Executocomponent evaluates such candidate by exercising t
Behavioral TSthat could be formatted under th&nit [10] frameworkor MuClipse
[11] — an Eclipse plug-in version of the MuJavanfeavork [12] to address Mutational
Testing. Final storedResultsfrom both checker components are shown into the
correspondindJser Interfacés view to present a selected candidate Web service

2.2. Example

Let us suppose the development of a Mail Managemgpptication (MMA) being
developed under the Java platforfig. 3 depicts the invoking and coordinating
componentMMA and the interfaces for its required key featutg§sa Mail Validation
tool, to validate an email address; 2) a Mail Segdbol, to send emails to one or
multiple receivers, in a blind (bcc) or the usuad)(copy mode — emails must include
both their subject and body. To clearly illustrtite use of the plug-in, the example is
reduced to the second required interfdgg famedMail_IF, shown inFig. 4(a), and
one candidate Web service: tAtMessaging service, whose interfacés) is shown in
Fig. 4 (b).

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 99

14th Argentine Symposium on Software Engineering, ASSE 2013

This example is used in the following sectionsxplain the basis of the two main
evaluations: Interface Compatibility and Behaviorongpatibility, which also
corresponds to theheckercomponents in the plug-in software architectdig.(2).

MMA

Mail E’

Management
Application

Fig. 3. Structure of Mail Management Application — MMA

«interface»
AtMessaging
PDecodeKey(byte[] pCodeKey):String
getKey(int,String):byte[]

«interface»

Majl_IF login(byte[],String):byte[]
sendMail(String,String, String, String):String logout(byte[]):byte[]
sendCC(String,String,String, String):String sendSMTPMail(String,String, String, String):int

sendBCC(String,String,String, String): String sendATMail(int,String,Calendar,String, String,String):int
getUnitMessages(byte[],int,Calendar):StUnitEMail[]
getUnitMessages2(byte[],int,Calendar):StUnitEMail2[]

(a) Required Interfaceg) — Mail_IF (b) Candidate Web Servicks)—AtMessaging
Fig. 4. Mail Management Application i andls for Mail sending feature

3. Interface Compatibility

The Interface Compatibility analysis — presented ainprevious work [4] —
comprises a practical Assessment Scheme to anapamtions from the interfade
(of a candidate servicg), with respect to the required interfake This step may
avoid discarding a candidate service upon simplematches but also preventing
from a serious incompatibility. In addition, helpfaformation about the adaptation
effort of a candidate service may take shape fgroaitive integration into the
consumer application.

The Assessment Scheme is divided in two parts.cdifstrong) and potential
(weaker) matching cases, which are automaticaiytified. Weaker matching cases
can also be used to solve incompatibilities in missutomatic manner. Both parts
consists of four compatibility levelseXact near-exact soft near-soff to classify
matching cases, defined as syntactic constraiptdjeal on a pair of corresponding
operations. Constraints are based on conditionsefements of an operation’s
signature (return, name, parameter, exception).

The outcome of this step is dnterface Matchinglist that characterizes each
correspondence according to the four levels of Aksessment Scheme. For each
operationopi € I, a list of compatible operatiomgs € |5 is shaped. For example, let
be Iz with three operations ard with five operations. The matching list might reésul
as follows:

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 100

14th Argentine Symposium on Software Engineering, ASSE 2013

{(0opr1, {0Ps1, OPsg), (OPrz {OPsa OPs4), (OPrs, {0Ps3)}

TheInterface Matchindist is also used to calculate a structural didainity value,
namedCompatibility Gap based on specific equivalence values assignédferent
syntactic constraints of the Assessment Schemg.;-tke value oéxactequivalence
is 4. TheCompatibility Gapbetweerlg andlscan be calculated by taking the highest
compatibility level for each operatiapr € Iz — the formula can be seen in [4]. This
value also gives evidence of the expected adaptafifort for the candidate service
integrability.

3.1. Interface Compatibility for the Mail feature

Fig. 5 shows the initial user interface of the plug-inyviaw of the Interface
Compatibility checker, to analyze the required rfatee Mail_IF and the candidate
AtMessaging service (through its WSDL document). A summarykheis shown inFig.

6, where all operations fromail_IF — i.e.,sendMail, sendBcc andsendCc — obtained one
near-exactmatch with arequivalencevalue of 6. From the total equivalence value
(18) and the best possible value (12) tloenpatibility gapbetweenMail_IF and the
AtMessaging service can be calculated 48/12-1 = 0.5

& Jaya - Eclipse SDK

File Edit Nawvigate Search Project Run Window Help

$-0-Q- HEG-® -
|2 Package Explorer 12 =H
= =2 Mma
= (2 src e i\ E_T' Compatibility Checker 72
= & mail
[MMA jave D:\workspace\MMAY, ClassPath Original
[1] Mail_IFjava mail.Mail_IF Original Class
Bl JRE System Library[Javase-1.6]
+ B Referenced Libraries Type of Candidate: (O Java Class (&) wsoL
Devworkspace\Repositony\atMessaging.wsdl Path WSDL |

[7] Direct Cases [7] Potential Cases

Calculate Compatibilit
O Consider Inherited Operations z

Fig. 5. Interface Compatibility CheckerMail_IF andAtMessaging service

When asking for detailed result&g. 7 shows that all operations frokil_IF match
the same operatiosendSMTPMail of the candidatétMessaging service, with anear-
exact_12equivalence. Operations coincide on the paraméigtré1) and neither of
them have exceptions (E1). For the return type,Sthirg type is considered as a
wildcard type allowing equivalence or subtyping (R2) witte int type. They also
have substring equivalence on operations names {N2jms ‘send’ and ‘mail’. In
fact, the last two correspondences could be geiésanable considering that after
sending the main email copy, additional copies BEcj could also be iteratively sent
with a similar procedure afterwards.

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 101

14th Argentine Symposium on Software Engineering, ASSE 2013

= | EF compatibiity Checker 23 =[S,

Summary Results of the Interface Compatibility Checker

MaiII_IF Exact - Mear-Exact | Soft Mear-Soft | Best\alue
sendMail 1 6
sendCC 1 &
sendBCC 1 &

Compatibility Gap walue = 0.5

Fig. 6. Interface Compatibility Checker — Result summaryMait_IF andAtMessaging service
it kg A E'_“ Compatibility Checker fE.CDmpatibjlij:y Results &5 E&ﬂ gé SR

Results of the Interface Compatibility Checker

Mail_IF AtMessaging
public String sendMail (String x1, (DN[13, n_exact 12, public int sendSMTPMail
String x2, String x3, String xd) (5tring x1, String x2, String x3, String =4), R2, N2, P1, E1]
public String sendCC (String «1, (DI[A3, n_exact_12, public int sendSMTPMail
String x2, String %3, String x4) (String «1, String %2, String x3, String »4), R2, N2, P1, E1]
public String sendBCC (5tring xd, (D13, n_exact 12, public int sendSMTPMail
String x2, String x3, String x4} (String x1, String x2, String x3, String x4}, R2, N2, P1, E1]

To Assign Higher Priority - Double Click on Selected Tkem

Fig. 7. Interface Compatibility Checker — Detailed ResultsMail_IF andAtMessaging service

If a mismatch is found for some operation, a depetccan solve it by the semi-
automatic facility Fig. 8 shows the view of manual matching with a hypotlatiase

where a developer is setting up a specific opergiair correspondence.
A g:f Compatibility Checker E@Manu,ﬁl Matching £ Erlﬁ' Cormpatibility Results Eé T !

PDecodekey getkey logim | logout sendSMTPMal s | | CQrignal | Candidate

sendMail + + + + + | | sendCC sendSMTPMail
sendCC + + + + =

sendBCC + + + + +

4 T 3 b

Generate Matching

Fig. 8. Interface Compatibility Checker — Manual Matching rexde
for Mail_IF andAtMessaging service

After that, thelnterface Matchinglist for Mail_IF and the candidatatMessaging
service is available — i.e., the tableFiig. 7. A conclusive decision to either accept or
reject a candidate serviG&must be made through the step of Behavior Comipigtib

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 102

14th Argentine Symposium on Software Engineering, ASSE 2013

The following section gives details of these stepwhich a required service's
functionality is represented as a particular TesteS

5. Behavior Compatibility

To carry out the Behavior Compatibility evaluatienpresented in [5] — for a
candidate servic&, a wrappers seV needs to be built. Those wrappers will be
necessary to execute the Behavioral TS (desigrettidaequired interfacky) against
eachw [0 W. Initially, only the higher compatibility level dhe Interface Matching
List is considered.

This process is based on theerface Mutationtechnique [13,14], and it applies
the mutation operator to change invocations to afgmrs and another operator to
change arguments for parameters. Th&rapper Generation Treis created, where
in each level of the tree the set of correspondefa® € |¢) is added for a different
operationopr € Ir. When a operations’ pair contains various pararsaiethe same
or equivalent type, also combination of argumemstsnéeded. Each combination
arising from different parameters matching shouldl ddded into the Wrapper
Generation Tree, in the form of a new branch.

Considering the case study, the operasmmMail implies a likely case in which its
String parameters exactly match (P1) with parameters foperationsendSMTPMail,
supposing that parameters lists are defined isdinee order.

If it is not the case, in order to find the righatwh there should be a swap into the
parameter list, to successfully identify the bebagompatibility for those operations.
Considering the parameters list witt8#ing parameters, the number of permutations
rises to 24 for each level of the tree, making wi®le number of wrappers to be
24*24*24 = 13824. Although this wrappers’ set beesnunwieldy to be tested, the
partial generation option of the tool (shownFiy. 9) can be used in order to build a
manageable wrappers’ set.

& Behavior Compatibility

Wrappers Generation f'ﬁ
Please, choose a wrappers generation setking B
() all wrappers

() wrappers in Blocks
(&) Wirappers From | 0| To | 23]

Directory of Resulking wWrappers:

Choose dir, ..
%

Fig. 9. Wrappers set generation options

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 103

14th Argentine Symposium on Software Engineering, ASSE 2013

Therefore, initially a sub-seW\) of 24 wrappers was generated as a result of this
step — fromwrapper0 to wrapper23, corresponding to the left branch in the wrapper
generation tree shown ifg. 10.

root AtMessaging Mail_IF

sendSMTP sendSMTP . sendSMTP sendMail
(a,b,c,d) (b,a,d,c) (d,c,b,a) (a,b,c,d)

sendSMTP sendSMTP ... sendSMTP ... sendSMTP sendCc
(a,bcd) (bac,d) (d,c,b,a) (d,c,b.a) (a,b,c,d)

sendSMTP sendSMTP sendSMTP | sendBcc

(a,b,c,d) (a,b,c,d) (d,c,b,a) A bied
wrapper0 wrapper24 wrapper13823 (abye,d)

Fig. 10. Wrapper Generation Tree fidail_IF andAtMessaging
(considering parameter combinations)

Test Suite Generation

To build a Behavioral TS foWail_IF, a concrete class implementing this interface
must be initially created to describe the requibethavior in the form of expected
results for some representative test data. Thidashalass is calleMail and simply
resembles an expected behavior according to cetgiat/output data for each
operation within théfail_IF interface. For example, the operatsendMail receives as
input four String parameters (sender, receiver, subject and bodg)retarns &itring
containing a control data (success/error). The e®gebehavior is checking that the
email is able to be sent to the receiver addresa byccessful return code. For this
case study, the test data involve two valid emddlrasses (authors’ personal mails)
for sender/receiver, and the subject and body veayd “hello” and “message”
respectively.

Relevant sequences of operations’ invocation arscrided astest templates
which are combined with the test data to genetaeBehavioral Test Suite (TS). The
TS has been generated inside a test driver Tdet\ail) in the specific JUnit format
[10]. Fig. 11 shows the test methotdstTS_5_1, which exercises the following
sequencesendMail, sendCC, andsendBcc.

Service Wrappers Evaluation.

At this point, the Behavioral Assessment activayuires executing the Behavioral
TS (built through the required interfatg) against candidate services through the
generated wrappers.

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 104

14th Argentine Symposium on Software Engineering, ASSE 2013

public void testTS 5 1() {
Mai | obt ai ned=nul | ;
obtai ned = new Mil ();
java.lang. String argl=(java.lang. String)
"martin.garri ga@ai . uncoma. edu. ar";
java.lang. String arg2=
(java.lang. String)"andres.fl ores@ ai . uncona. edu. ar";
java.lang. String arg3= (java.lang.String) "hello";
java.lang. String arg4= (java.lang. String) "message";
java.lang. String resul t0=
obt ai ned. sendMai | (argl, arg2, arg3, arg4);
java.lang. String arg5=
(java.l ang. String)"al ej andra. cechi ch@ai . uncona. edu. ar";
java.lang. String resultil=
obt ai ned. sendCc(argl, argb, arg3, arg4);
java.lang. String arg6=
(java.l ang. String) "azuni no@ si stan. unicen. edu. ar";
java.lang. String result2=
obt ai ned. sendBcc(argl, arg6, arg3, arg4);
assertTrue(result0 == resultl == result2 == "success"

Fig. 11. JUnit Test Case fdvail.

In this process, the wrappers are generated witladalitional responsibility of
auto-configuration by instantiating the corresponding subclasd gof a services).

In addition, the subclass implementing the intexfag which links wrappers to the
proxy Ps, is also auto-configurable by instantiating classemprising the generated
proxy. Fig. 12 depicts the class structure for tHeil_IF feature. AlsoFig. 13 shows
the source code of one generated wrappepifer0). This wrapper complies with the
structure depicted ifig. 12 in which a proxy Ps) has been generated for invoking
operations of servic&tMessaging.

The TSTestMail instantiates and invokes tiail class, which represents not only
the shadow class for the required interf8laé_IF, but also represents the wrappers.
This is done to avoid name modifications into tt&(designed for thehadowclass).

Thus, if a wrapper successfully passes at leastd0te Behavioral TS, it will be
correctly describing the required behavior defildthe shadowclass. Finally, this
wrapper may be used instead of #teadowclass allowing a safe integration of a
candidate service.

After setting the specific class structure, ThgiMail test file can be run against the
generated subseif) of wrappers. The tool support makes use of heClipse
framework [11] to execute the Test, as showRim 14.

In this case, onlywrapper0 successfully passed the tests, which confirms the
expected behavior specified for the required iaiseMail_IF. A detailed description of
the service wrappers evaluation procedure can doedfen [5].

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 105

14th Argentine Symposium on Software Engineering, ASSE 2013

.2 ... client::Stub

«interface» «interface»
MujavaMail Mail_IF
«interface» e ——
AtMessaginglF :-...:ServiceClient
| N
| !
| ! /’}\ AtMessagingCallback <=1
| | | Handler |
| | | |
| Mail ‘ AtMessaging ‘ «Call, instantiate, | AtMessagingStub _____?iFanun»
rox ettt S s
«Callindtentizte, - shadowolass) | 2O] ot]
import» wrappers»

Fig. 12. TestSuite foMail_IF to evaluate Wrappers through the Proxy

public class Mail inplenents Mail _IF {
private At Messaging proxy = null;
public Mail () { proxy = new At Messagi ng();
Y oIo---
public java.lang. String sendMail (String x0, String x1,
String x2, String x3){
java.lang. String resulto = "";
try { resultO0 = proxy.sendSMIPMai | (x0, x1, x2, x3);
} catch (Exception e) {
e.printStackTrace();
throw new Runti meException(e); }
return resulto;
Y oIo---
public java.lang. String sendCC(String x0, String x1,
String x2, String x3){
java.lang. String result0 = "";
try { resultO = proxy.sendSMIPMai | (x0, x1, x2, x3);
} catch (Exception e) {
e.printStackTrace();
t hrow new Runti neException(e); }
return resulto;
yoIrro---
public java.lang. String sendBCC(String x0, String x1,
String x2, String x3){
java.lang. String result0 = "";
try { resultO0 = proxy.sendSMIPMai | (x0, x1, x2, x3);
} catch (Exception e) {
e.printStackTrace();
t hrow new Runti meException(e); }
return resultO;} // ---

Fig. 13. Mail wrapper for thétMessaging service.

Since the selection method has been defined frotesting based assessment
model, intermediate processes were defined not tmlgerform an evaluation of
candidate services, but also to provide an ealiytisa through the testing activity.
The process offers a pragmatic guide to analyze affithe-shelf component,
including web services as a particular form of wafie component [15].

Results of the underlying behavior compatibilityakaation against a case study
can be seen in [16]. Also, an initial insight intbe procedure performance is
provided, although it has been improved througte fianing the test suite and
wrappers set generation.

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 106

14th Argentine Symposium on Software Engineering, ASSE 2013

= Run &J

Create, manage, and run configurations P

ot

%+ = (==
= Wl =) Name: TestMailWrappers

type filter text - - . —
1] Directories . & Testing Options| %, Classpath | g, JRE %, Source| B Environment | (=] Common

K Java Bean a || 5 - — e 1 1 1

[&] JBoss AQP Applicatio .

e JET Transformation Project MMA ‘Browse..‘

Ju JUnit

& Mutants Output results
Ju JUnit Plug-in Test

S, MuClipse: Mutants

, New_configuratia | Classes Folder bin | Browse...
8t MuClipse: Tests | SaticeEolier < ‘ e |

3% TestMailWrappers =
& 0567 Framework E | Testset Folder results/wrappers ‘m|
“% Ruby Script
4 Run on Server Target Class mail.Mail_IF ‘ Browse... |
Tr‘j Task Context Plug-in

i Test TestMail ‘ Browse.., |

Juy Task Context Test | 20
o Tel Script
B Test -
< 1 " s Apply ‘ | Revert ‘
Filter matched 39 of 74 items
@ Eun ‘ Close |

Fig. 14. MuClipsetest configuration for running the TS

6. Related Work

Several approaches have been proposed towardsufjios for the development of
service-oriented applications.

From the Web service composition point of view[1f] the development of an
end-to-end service composition IDE is presentede Tboling support mainly
encompasses requirement analysis and design dB&nnhechanisms for leveraging
and integrating existing tools and technologies ithie IDE and the development of
the IDE as a set of Eclipse plugins. As servicec®ln is a key part of the service
composition problem, our plugin can be seen asofrike technologies which could
be integrated into such an IDE.

Another Eclipse plug-in for formal verification deb service composition is
presented if18]. Such plug-in was originally a part of the LASool suite which
provides model-checking tools. It was conveniendytended to support the
development of (composite) service-oriented appbioa, featuring UML Message
Sequence Charts for scenario modeling, which ae@ ttompiled in Finite State
Process algebra to formalize behavior. The plugiarchitected following the model-
view-controller pattern. In contrast, our pluginiidended as a ready-to-use tool to
support developers’ daily tasks of service selectivithout introducing extra
complexity.

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 107

14th Argentine Symposium on Software Engineering, ASSE 2013

From the service discovery point of view, the Ed@¢Sproject [19] presents a
catalog of guidelines to build service-oriented laaions and services. This catalog
synthesizes best SOC development practices. Thespamding EasySOC plug-in for
the Eclipse IDE has been implemented to simpligy ukilization of the guidelines for
service publication, discovery and consumptiongRiuprovision encourages readily
adoption of proposed ideas in the software indufecent works have demonstrated
the suitability of integrating EasySOC with our posal featuring a comprehensive
process for building Service-oriented Applicatifsk

Another approach with a similar scope to oursrasented in [20]Studying the
similarity between (WSDL) Web service descriptiappears as a key solution for
service interoperability. The similarity measuremgrocess encompasses calculating
similarity between service names, operations, ifmptpput messages, parameters, and
documentation, mainly gathered from XML Schema Doents (XSD) associated
with services. Those calculations are supporteaiutyin a stand-alone Java-based tool
called WSSim which parses WSDL documents, calcsilatmilarities and returns a
final score — equivalent to our Compatibility Gamlue. However, an initial
comparison of complex type similarity can be perfed without dealing with the
complexity of a XML schema. In our approach, thalgsis of WSDL documents
allows addressing complex data types while aimingghtweight proposal, and
reducing the learning curve and the adoption efibthe tool.

With regard to the behavioral and syntactic assessmof services, the following
works are also related to our goals.

The approach in [21] evaluates compatibility forvemes with two purposes:
substitutability and composability. The evaluatisrbased on input and output data
registered after testing individual operations éaich candidate service. For this, a
different TS is built for each operation in eaclvgse under evaluation, which is
based on selected input data (either randomly arualdy). The main aspect of our
TS relies on describing a complex behavior exhibitey operational sequences
(instead of testing individual operations), which more likely on stateful Web
Services. The behavioral evaluation is only dorergfassing the syntactic Interface
Compatibility analysis, which reduces computationthe testing phase.

The work in [22] is also concerned with substitn§oof inoperable services with
compatible ones. Automatically finding optimal didns implies the challenging
issue of discerning the behavior of services. Tiwgr@ach attempts to discover and
comprehend services’ behavior and classify theno iolusters by means of
compliance testing. However, the approach has yalegr confidence on any service
description, also ignoring WSDL specifications loe tlerived Java interfaces.

The work in [23] addresses the improvement of &ffitiency during service
selection and composition, focusing in dependabdihd trustworthiness issues. A
framework is proposed to support group testingliaegmver a set of atomic services
that could be potential parts of a service compmsitSome of the ideas proposed in
this paper are being implemented to prune the veapmeneration tree and
minimizing the TS.

Another work [24] is intended to cope with Web seevtesting. A collaborative
testing framework has been proposed, where tesdisks are performed through the

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 108

14th Argentine Symposium on Software Engineering, ASSE 2013

collaboration of various test services (T-servidbs)} are registered, discovered and
invoked at runtime using an ontology of softwarstitey called STOWS. Each
functional service should be accompanied with aigpd-service, though managing
the T-services’ set introduces an inconvenient lozad. The proposed framework is
particularly intended to verify a proper serviceeextion through strategies to find
faults, using a semantic Web Service approach. eksastic information of Web
Services such as ontologies is rarely availablg, [@% plugin relies on syntactic and
structural definitions of Web Services availabléM$DL specifications.

To support programmatic service discovery, in [&#@ authors have developed a
suite of methods to assess the similarity betweenWSDL specifications based on
the structure of their data types and operationd, the semantics of their natural
language descriptions and identifiers, given on(patentially partial) description of
the desired service.

7. Conclusionsand Future Work

In this paper we have presented an Eclipse IDE-pls a support of a Selection
Method to assess a candidate Web service foikidylintegration into a SOC-based
application under development. This method provides practical Interface
Compatibility analysis and a Behavioral Compatipiévaluation.

The availability of IDE-integrated tools that aidevelopment processes will help
software practitioners to rapidly adopt best pcasj particularly for building real
service-oriented applications.

The architecture of our plugin is based on intégravith well-known frameworks
such as Apache Axis2 for service handling, dhhit and MuClipsefor behavioral
evaluation. Besides, a Testing Meta-Model crosses the entire architecture as a
way to manage, store and assess the structurendidede services’ specifications
(static and dynamic aspects).

Our current work is focused on integrating in thieigein some Information
Retrieval techniques to better analyzing conceptenfinterfaces. This will be
complemented with a semantic-basis — particulatiypugh the WordNet lexical
dictionary [27] and its Java APl JWI

Besides, performance evaluation of the plugin isdasory. We are carrying out
experiments using different data-sets previousgdusy numerous authors to validate
service-oriented proposals [28,29], and includieglsword Web Services. Initial
results show an improvement of the service selegitocedure in terms of classic IR
metrics such agecall and precision independently from the underlying service
discovery registry.

Another concern implies the composition of candidaervices to fulfill
functionality, which is particularly useful when single candidate service cannot
provide the whole required functionality. We wilkpgand the current procedures,
models and tools mainly focusing service orchesimng0,31,32].

* The MIT Java Wordnet Interfacehttp://projects.csail.mit.edu/jwi/

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 109

14th Argentine Symposium on Software Engineering, ASSE 2013

Acknowledgments

We would like to thank to the anonymous reviewans their helpful feedback.

Also, we would like to thank to the BSc. studentriaWeingart for his valuable

contribution in tool development.
References
1. Sprott D, L W. Understanding Service-Oriented Aretiure. The Architecture Journal.

9.

10

11

12

13.

14.

15.

16.

17.

18.

MSDN Library. Microsoft Corporation; 1(13). Januarkttp:/msdn.microsoft.com/en-
us/library/aa480021.aspf2004)

. Erickson, J., Siau, K.: Web service, service-ogdnicomputing, and service-oriented

architecture: Separating hype from reality. Jouai®D Management, 19(3), 42-54 (2008).

. Bichler, M., Lin, K.: Service-oriented computing. Cputer, 39(3), 99-101 (2006)
. Garriga, M., Flores, A., Cechich, A., Zunino, A..aBtical Assessment Scheme to Service

Selection for SOC-based Applications. SADIO ElesicoJournal (EJS), vol. 11, no. 1.
Special Issue dedicated to ASSE’'11. pp. 16-30 (R012

. Garriga, M., Flores, A., Cechich, A., Zunino, A.. Befor Assessment based Selection

Method for Service Oriented Applications Integriiil 13" ASSE’12, 41 JAIIO, SADIO.
pp. 339-353. Cérdoba, Argentina. 27-31 August. (2012

. Flores, A., Polo, M.: Testing-based Process for Gmmept Substitutability. Journal STVR,

vol. 22. no. 8. pp. 529-561, Wiley. DQittp://dx.doi.org/10.1002/stvr.432012)

. The Eclipse Foundation. Eclipse.org Home Patfe.//www.eclipse.org(2013)
. Yap, N.; Chiong, H.C.; Grundy, John; Berrigan, R.: |Suting dynamic software tool

integration via Web service-based compondntsceedings of the AustraliaBoftware
Engineering Conferencep.160,169, 29 March- 1 April. (2005).

OMG. UML Testing Profile version 1.0. Technical Repformal/05-07-07, OMG, July.
(2005).

JUnit Home Page. JUnitorg Resources for Test Drivebevelopment.
http://www.junit.org/homg2013)

MuClipse Home Page. Eclipse Plug-in for the MuJavautation engine.
http://muclipse.sourceforge.n@013)

.pJava Home Page: Mutation system for Java programs.
http://cs.gmu.edu/~offutt/mujavé2011)

Gosh, S., Mathur, A. P.: Interface Mutation. Softvdesting, Verification and Reliability,
11:227-247. (2001)

Delamaro, M, Maldonado, J., Mathur, A.: Interfacetition: An Approach for Integration
Testing. IEEE Transactions on Software Enginee@7§3):228—-247. (2001)

Kung-Kiu, L., Zheng, W.: Software Component ModdEEE Transactions on Software
Engineering, 33(10), 709-724 (2007).

Garriga, M.; Flores, A.; Cechich, A.; Zunino, A., stieg-Based Process for Service-
Oriented Applications, IEEE 30th International Coefece of the Chilean Computer
Science Society (SCCC), pp.64,73, 9-11 Nov. (2011)

Chafle, G.; Das, G.; Dasgupta, K.; Kumar, A.; Mittal; Mukherjea, S.; Srivastava, B.: An
Integrated Development Environment for Web Sen@mmposition. IEEE International
Conference on Web Services ICWS, pp.839-847, 9-33(2007)

Foster, H., Uchitel, S., Magee, J., & Kramer, J.SIAFWS: a tool for model-based
verification of web service compositions and chgrephy. Proceedings of the 28th
international conference on Software engineeripy {@1-774). ACM. (2006)

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 110

19

20

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32

14th Argentine Symposium on Software Engineering, ASSE 2013

.Rodriguez, J. M., Crasso, M., Mateos, C., Zunino 8AGampo, M. The EasySOC project:
a rich catalog of best practices for developing welvice applications. CLEI Electronic
Journal, 14(3). (2011)

. Tibermacine, O., Tibermacine, C., & Cherif, F. WSSenTool for the Measurement of

Web Service Interface Similarity. To appear in Rexings of the 25th International
Conference on Software Engineering and Knowledgerieegng. (2013)

Ernst, M., Lencevicius, R., Perkins, J.: Detectidn\Web Service Substitutability and
Composability. In: WS-MaTe 2006: International Wdrép on Web Services — Modeling
and Testing. pp. 123-135. Palermo, Italy. (2006)

Church, J., Motro, A.: Learning Service Behavior wRnogressive Testing. In: IEEE
SOCA'11. Irvine, USA. (2011)

Tsai, W., Zhou, X., Chen, Y., Bai, X.: On Testingda&valuating Service-Oriented
Software. IEEE Computer 41(8), 40-46 (2008)

Zhu, H., Yufeng, Z.: Collaborative Testing of WebnSees. IEEE Transactions on
Services Computing 5(1), 116-130 (2010)

Brogi, A. On the potential advantages of exploitlmehavioral information for contract-
based service discovery and composition. The Jbuofalogic and Algebraic
Programming, 80(1):3-12, (2011)

Stroulia, E. & Wang, Y. Structural and Semantic dhittg for Assessing Web-Services
Similarity. International Journal of Cooperative Information s, 14407-437. (2005)

WordNet: A lexical database for English. Princetodniversity, NJ, USA.
http://wordnet.princeton.ed(2012)

Hel3, A., Johnston, E., & Kushmerick, N., AssampAltfor semi-automatically annotating
semantic Web Services. The Semantic Web Confere8@¢C| pp. 320-334. Springer
Berlin Heidelberg. (2004)

Mateos, C., Crasso, M., Zunino, A. & Ordiales, J. Detecting WSDL bad practices in
code—first Web Services. International Journal afWand Grid Services, 7(4):357-387,
(2011)

Weerawarana, S.; et al., Web Services Platform ifgcture: SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WS-Reliable Messaging, andeMBrentice Hall PTR (2005).
Daniel, F., Pernici, B.: Insights into Web Serviceckestration and Choreography.
International Journal of E-Business Research 2(H7582006)

.Peltz, C. Web Services Orchestration and ChoreogrdgEE Computer, 36(1046-52.
(2003)

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 111

