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Abstract.This paper addresses the comparison between tloitges for the
optimization under parametric uncertainty of mutiguct batch plants integrat-
ing design and production planning decisions. Phéblem has been conceived
as a two-stage stochastic mixed integer linear raraming (MILP) in which
the first-stage decisions consist of design vaestthat allow determining the
batch plant structure, and the second-stage dasisionsist of production plan-
ning continuous variables in a multiperiod cont&kte objective function max-
imizes the expected net present value. In thedoskting approach, the problem
has been tackled through mathematical programnongidering a discrete set
of scenarios. In the second solving approach, thki-stenario MILP problem
has been reformulated by adopting a simulation<bagtimization scheme to
accommodate the variables belonging to differenhagament levels. Advan-
tages and disadvantages of both approaches arendeated through a case
study. Results allow concluding that a simulatiosdshoptimization strategy
may be a suitable technique to afford two-stagehststic programming prob-
lems.

Keywords:uncertainty, two-stage stochastic programming, ktan-based
optimization

1 Introduction

The concepts involved in decision-making under wadgty are closely linked to
those of optimization under uncertainty. Literatoreoptimization under uncertainty
very often divides the approaches into two categoriwait and see” and “here and
now”. In the “wait and see” approaches, one hawad until an observation on the
random elements is made, and then solve the detistioi problem. Conversely, a
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“here and now” problem involves optimization ovente probabilistic measure of the
system performance —usually the expected valwhdtld be noted that many realis-
tic problems have both “here and now”, and “wait @&ee” approaches embedded in
them. The trick to overcome this situation is twidi the decisions into these two
categories and use a coupled approach [1].

In this regard, many advances have been obseruwbeé isupporting theory, includ-
ing algorithmic developments and computational béjies for solving this class of
problems, most of which fall into one of these tar@as: multistage stochastic pro-
gramming and stochastic optimal control.

In multistage stochastic programming, decisions lmased on past observations
and decisions before the future events occur [Z]nike set of scenarios is often gen-
erated to represent the space, therefore, theagticiprogram becomes a determinis-
tic equivalent program, whose size can easily goowof hand for a large number of
scenarios, making the direct solution approachesenigally intractable, thus requir-
ing methods of decomposition or aggregation [3].

Stochastic optimal control describes a sequengalsibn problem in which the
decision-maker chooses an action in the statewedoht any decision stage according
to a decision rule or policy. Dynamic programming\pdes the framework for de-
signing algorithms to compute an optimal controliggo However, for large prob-
lems, dynamic programming also suffers numericathyn dimensionality. Both ap-
proaches -stochastic programming and optimal cbrdre essentially equivalent, but
they exhibit differences in formulation and solatiavith the consequent advantages
and disadvantages for specific problems (see $][6], and [7]).

Efficient numerical solution proposals can be aebitby combining several tech-
nigues that belong to each approach. The resutfirijegy needs to be adapted to
solve the specific problem, defining some approxioms or heuristic-based methods.
The works [8] and [9] are relevant examples in thigard.

In the literature, it is not easy to find comparnisaegarding the two-stage stochas-
tic scheme solved by mathematical programming ayndhle heuristic simulation-
based optimization approach. Therefore, this wadsents such comparison so as to
demonstrate advantages and disadvantages of hutbeapes.

2 Description of the techniques used in the comparison

21 Two-stage stochastic programming

The two-stage stochastic linear programming (2SSitBhlem can be stated as in
(2]:
minc’ x+ E,Q(X; w)
X
Ax=b )

x=0
where:
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Q(x;w) =mind,"y
y
T X+W,y =h,
y=0
HereE, is the expectation, and denotes a scenario or possible outcome with re-

spect to the probability spac@;(P). The variablex are the first-stage variables, as
they have to be decided upon before the stocheatiablew realizes. The variables
yare second-stage variables: they can be assessethafoutcome ab is known.

In this work discrete distributionB are only considered, specifically through a
Monte Carlo sampling technique, so it can be writte

E.Q(x @)= p(@)Q(x ) @)
a1Q
Therefore, a large LP can be formulated. This Lihésdeterministic equivalent of
the problem:
minc’x+ > p(w)d}y,,

X W0
Ax=b
T Xx+W,y,=h
x=20y,=20

The sequence of events in (3) is as follows: flistdecision maker implements the
first stage decisions. Then the system will be subjected to the randoocgss de-
scribed by @; P), which results in an outcome1Q. Finally, the decision maker will
execute the second stage decisipnaccordingly.

3)
Ow

w

2.2 Simulation-based optimization strategy

The simulation-based optimization (SbO) algorithrogmsed for the comparison is
a variation of the one presented in [10] and [1id aan be followed from Fig. 1. It
involves an outer loop which corresponds to a derdgorithm (GA) strategy and an
inner loop which is a Monte Carlo sampling of thecertain parameters over an LP
deterministic planning model. As in the stochaptiogramming technique, variables
must be divided into first-and second-stage vagsbl

At the beginning of the algorithm initial estimat®for the first stage variables are
provided to the GA outer loop, which in turn ruhe inner loop taking samples of the
uncertain parameters. For each sampling, an LRrdigtistic planning model obtains
the values of the second-stage decisions varianldgives a value for the objective
function. Enough samplings of the LP model are dongbtain a representative value
of the population of objective function values. dby the expected value is utilized
and then is returned to the GA outer loop, whichsus to search for the optimum
combination of first-stage variables’ values. Adilis utilized to avoid the use of the
inner loop when an already-tried combination oftfistage variables is chosen again
(the filter returns the same expected value obtjective function).
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Fig. 1. Simulation-based optimization strategy.

The variation introduced in this work with respexthe SbO strategy described in
[10] and [11] is that the simulation step in thaénloop is replaced with an LP opti-
mization for each sample of the uncertain pararseféne reason for this variation is
to make this technique and the stochastic progragmore comparable.

3 Design and planning of a multiproduct plant in a mutiperiod
environment. Overall description

In a multiperiod environment, consider a multiprodplant that processes a $et
of productsi over a time horizomd, which is divided intat = 1, 2,...NT specified
time periodsH;, not necessarily of the same length. Every prodfmtows the same
production sequence throughout akef batch processing stages and a<sef semi-
continuous stages that fofdLsemi-continuous subtrains. The production of produc
at every time period requires a given processing tirpt; in batch stage¢ and the
size/duty factor§F;;/Dyy for each batch/semi-continuous stage.

In order to reduce idle times in the plant, outpbfse duplication of batch units
and the introduction of intermediate storage tadmksveen batch stages are allowed.
Additionally, in-phase duplication is admitted ans-continuous stages, so each
stagek can consists of one or more units of the same &izeM; denote the set {1,

2, MEJ } of possible number of equal units that can becated in parallel in each

batch stagg. And letG, be the set {1, 2,...G. } of units that can be duplicated in
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parallel in semi-continuous stage Thus,md M; identical parallel units can operate
out of phase in stageandg/ %Gy parallel units operate in phase in stkg&Vhen an
intermediate tank is allocated, the original pracissdecoupled in subprocesses, up-
stream and downstream of the tank, each one halffegent batch size and limiting
cycle time.

Also, the design problem involves the selectiore@fipment sizes for both batch
and semi-continuous units, and intermediate stotagiks from a number of available
discrete sizes. Thus, the batch unit size of siagg and the size of semi-continuous
unit at stagek, R,, are restricted to values from the s&% ={ v, V,,....in} and
SR W, Wo,..., akmid, respectively. In the same way, the size of gjertanksvT; is
restricted to values from the s&f={ vtj;, Uj,,..., W g}

The plant operates in a single product campaigiC{3Rode in every time period,
and when storage tank are not allocated, a Zerd &) policy is employed.

Product demands are not known to the decision makhrcertainty, but it is as-
sumed that the uncertainty can be representeddsy af scenarioS. Each scenario
sUS has a known probabilitps that reflects the likelihood of each scenario ket
place withzSDS p, =1. Moreover, these scenarios are described throogkrland
upper bounds on product demand levels in each gietodt, DE.andDE;.. The
amounts of raw materials consumed are determineth&ss balances with a given
parameterr;; that accounts for the process conversion of rawena to product
during periodct. Costs and availability of raw materials vary frperiod to period and
are assumed to be known. Also, prices of final potslin each time period and max-
imum available storage capacities are problem data.

In every scenarig, production planning decisions allow to determatesach pe-
riod t and for each produdt the amount to be producegk, the number of batches
Ny, and the total timd;s to produce produdt Furthermore, at the end of every period
t, the levels of both final produt®P;s and raw material inventoriéM;;s are obtained.
The total saleQS;, the amount of raw material purchasgd, and the raw material
to be used for the productid®M;;s of producti in each time period are determined
with this formulation. In this model, it is assumibct each product requires a unique
raw material that it is not shared by other produ¢towever, more sophisticated
transformation processes can be easily incorporated

In summary, a two-stage stochastic MILP model waxgetbped. First-stage deci-
sions consist of design variables that allow deteirrg the batch plant structure.
Second-stage decisions consist of planning vasafdentinuous variables) to deter-
mine the production, purchases, and inventoriesaef materials and products for
each period throughout the time horizon under eaelmario, given the plant structure
decided at the first-stage.

The objective function maximizes the expected mes@nt valueENPV) over a set
of scenarios.
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The economic criterion in Eq. (4) is calculatedtbg probabilistic average of the
difference between the revenue due to product saléghe overall costs in each sce-
narios, with the latter consisting of the cost of raw aratls, inventory costs, and the
capital investment cost corresponding to batchsusiémi-continuous units, and sto-
rage tanks. Parametanp,, ki, &, and g, are the corresponding cost coefficients for
each term associated with production planning dmtss Note that all the above cost
coefficients take into account the time value ofneyg in other words, they are dis-
counted prices for each time period with a spetiiigerest rate.

Due to space reasons, the detailed formulatiorigprovided in this manuscript,
but readers can see [12] for more details.

4 Implementation and results

In order to create a manageable problem, the exafrph [12] has been modified
to account for only 4 periods, but still with aneoation horizon of one year. There-
fore some parameters have been changed as shovables 1 and 2. All other para-
meters have been kept unmodified.

Table 1.Data for the model

Costs of raw materials;; ($/kg) Prices of productsp; ($/kg)
A B C D E A B C D E

—

2.200 0.500 1.200 0.600 1.300 55.00 47.00 40.02.004 48.00

1.733 1500 2.067 1.400 1.600 53.00 48.00 42.64.04 50.67

1.733 1500 2500 1.400 1.600 53.00 48.00 44.04.004 50.67

2200 1500 1.633 0.600 1.000 55.00 46.00 41.32.004 48.00
& = 0.0002 $/kg/hr oiy = 0.0015 $/kg/hr

A WOWDN P

As explained before, the demands are the unceptaimmeters in the formulation,
which are specified by a range of lower-upper beu@@E"-DE",). For each scena-
rio, the nominal upper bound on product demandsviery time period is affected
with a factor generated following a normal probigpitlistribution N(1, 0.20). The
lower bounds on demands for each product are s60% of the upper demands.
Therefore, the number of uncertain parametershientork is 20.
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Table 2. Nominal upper bounds on demands

DEY; (x 10° kg) "

—

A B C D E
1 6.40 6.90 8.50 7.50 7.30
2 5.00 6.40 7.90 7.30 10.00
3 6.00 7.20 6.90 7.30 8.90
4 4.50 8.00 8.40 7.50 6.90
t Lower bounds on demand3E";, are calculated as 0BEY,.

The problem was solved with the techniques desgribéection 2 in a AMD A6-
3620 APU system (4 cores)at 2.20GHz with 8Gb of RAMmMory, 64bit operating
OS, using in both cases the GAMS 24.0.2/CPLEX 02blver for MILP/LP resolu-
tions (2SSLPtechnique and inner loop of the SbhChowtand the MATLAB R2008a
package for the outer loop, with the GA toolboxdiséth default options. For the
SbhO technique it was determined that 50 samplingthé inner loop per solution
were sufficient to obtain a representat&dPV value (i.e., in consecutive tests at or
near the optimal solution, tHeNPV did not vary enough as to change the combina-
tion of outer loop variables at the optimal solajio

4.1  Determination of the optimal solution

The characteristics of the problem described ingtevious section allow deter-
mining its optimal solution before applying thehamues proposed in this work.

In Eq. (4) the expected net present value is etjusthe incomes from sales*(1
term) minus the cost of raw materials(Brm), minus the cost of inventories®3
term) minus the capital cost for all the equipmiestalled in the plant 4term is the
cost for batch units,"5term is the cost for semi-continuous units, afidesm is the
cost for storage tanks).

In both techniques, the planning decisions (hantedhe second-stage variables
in the 2SSLP method and the inner loop LP in th® Spproach), give flexibility to
the plant in order to fulfill at least minimum denas. However, this flexibility is
limited by the decisions taken in the first-stageooter loop, i.e., the plant structure.
In some scenarios, for a given plant structureait happen that no combination of
planning variables allow fulfilling demands, leaglito infeasibilities. If a given plant
structure does not fall in infeasibilities for #fle generated scenarios, tEBEPV be-
comes the cost of the installed plant plus the egaped effect of all the scenarios.
This aggregated effect is the mean of the applatupbation, which (for the normal
distribution perturbations utilized in this worlg the nominal value for the demand.
Therefore, th&NPV, for a given plant structure for which no infeal#iles are found,
is equal to the case where no parametric unceytartonsidered. On the other hand,
if the installed plant cannot comply with minimurerdands in one or more of the
generated scenarios, th& term of Eq. (4) becomes infeasible or null (depegdn
the utilized solving technique) for that scenanma ahe aggregated effect decreases
with respect to the nominal value.

42 JAIIO - SII 2013 - ISSN: 2313-9102 - Page 100



2do Simposio Argentino de Informatica Industrial, SII 2013

For the present problem, values of non-uncertaiarpaters and perturbations ap-
plied to demands have been chosen to producettietisn described in the previous
paragraph for first-stage variables combinationthatoptimum solution and near it.
Therefore, solving the problem without considerparametric uncertainty gives a
solution whose corresponding first-stage varialalesthe same as those obtained in
the optimal solution for the problem consideringemainties.

The optimal plant structure for the non-uncertaicdge is >, Vs, Ve) = (2000 L,
1500 L, 100 L) with 2 units for the first batch@aand 1 and 2 units for the next two
batch stages, an®{, Rs, Rs, R;) = (30 HP, 2.5 ) 3 nf, 30 HP) for semi-continuous
stages, with 2, 2, 3 and 1 units operating in pelratspectively, and a storage tank
after the second batch stage with si&,J = (4000). The objective function value for
this solution is $2,766,549.07.

4.2 Resaults

Table 3 shows the solution performance of both riggkes and the size of the
problem that each solved.

Table 3. Solution performance of the 2SSLP and SbO teclasiqu

2SSLP SbO
Objective function value $2740130.32 $2784888.82
CPU time 23306.908 secs 25206.702 Secs
50 scenarios Population: 200
131924 eqs. Generations: 81
Problem size 137109 continuous vars. Unique solutions: 3100
70 binary vars. Best solution found at gen-
eration 16
Valid solutiong’ 243463652 = 4534963200
Found optimal solution? Yes Yes

T Algorithm stopped by time limit (25000 seconds)lation at generation 81.
™ Total quantity of valid combinations of the integeriables.

Fig. 2 shows the convergence of the objective fanctalue with the number of
scenarios utilized. The dotted line representsatrerageENPV value. As expected,
the computing time to solve the example in eactaimt® increases with the number
of scenarios. When thENPV value starts to stabilize the computing time igha
range of 20000-25000 seconds. Therefore, the iostah50 scenarios has been cho-
sen as the optimal number and its statistics pteden Table 3.
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Fig. 2.0bjective function convergence for the 2SSLP teghei

Fig. 3 presents the solving performance of the &uBnique. For a better compar-
ison with the 2SSLP method, the algorithm was formerun until a computing time
limit of 25000 seconds. But, it can be seen thatdptimal solution is found very
early in the process, in generation 16. In theofeihg generations this solution is
held as the optimal, but the algorithm continuexkiog for other solutions that could
improve the result, therefore maintaining a gresi getween the best and the worst
individual in each generation. The objective fuoctivalue in the worst individual of
each generation varies greatly due to the presenoet of unfeasible scenarios, but
the average number per individual stabilizes arayereration 10.
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Fig. 3. Objective function convergence for the 2SSLP tegqim

As can be seen from Table 3 and Figs. 2 and 3ewtuth techniques find the op-
timal solution, the SbO algorithm takes less thaif bf the computing time. The
ENPV of both techniques differ from the non-uncertaiotynsidered case. The reason
for this difference is that the discretization o€ tuncertain parameters does not allow
for a totally smooth representation, but in botkesathe difference is less than 1%.
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We can conclude that the SbO technique is bettesrins of computing time, but,
since it utilizes a metaheuristic algorithm, it cahdetermine if it has reached the
optimal solution.

5 Conclusions

This paper compares the performance of two teclesidor optimization under pa-
rametric uncertainty in solving the simultaneousigie and planning of a multipro-
duct plant. The problem presented in this work @syvinteresting and difficult to
solve, even more if uncertainty is considered. Hmwgeits characteristics can be
modified to allow for its use as a benchmark fdfedent solving approaches, since an
optimal solution for the problem can be found befdrese techniques are applied.

The techniques compared in this work are a rigotousstage stochastic pro-
gramming and a hybrid simulation-based optimizaadgorithm. The characteristics
of both methods where manipulated for a more fittechparison. The SbO approach
had a better performance in terms of computing tiwigle both of them reached the
optimal solution. However, since SbO utilizes a aheuristic algorithm it cannot
ensure having found the best solution, thus leattirggpotentially waste of computa-
tion power and time.

As a future work, the two-stage stochastic programgrwith relaxation techniques
should be included in the comparison, since thie@iracteristics can lead to a better
performance.
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