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Abstract. In many of the extensions of the core of a game with trans-
ferable utility to non-balanced games the subjacent idea is to construct
first a related balanced game, and then, to take its core as an extended
core notion for the original non-balanced game. The ε-core and the as-
piration core are two examples of this methodology. While the balanced
game related to the ε-core is gotten by reducing in a positive amount ε
the value of any non-empty coalition different from the grand coalition,
the balanced game related to the aspiration core is obtained by increas-
ing the value of the grand coalition by an appropriate quantity. In both
cases, the balanced game obtained is not an orthogonal projection of the
original game onto the cone of balanced games. We propose a new exten-
sion which uses, as an auxiliary balanced game, a game which is, indeed,
an orthogonal projection of the original game on the cone of balanced
games. In this projected game, the value of the grand coalition increases
while the value of some of the others coalitions decreases. In this note e
explore some computational procedures to get the projected game.

1 Introduction

The core is the most widely accepted solution concept for games with transferable
utility (TU -game). The well-known Shapley-Bondareva Theorem (Bondareva [2],
Shapley [7]) characterizes the class of games with non-empty core as the class of
balanced games. Shapley [7]) also shows that the set of balanced games is a full
dimensional cone. The fact that the core may be the empty set has motivated
the study of several core-type solutions for other classes of games containing that
of balanced games. Relevant to our purpose are the strong ε-core (Shapley and
Shubik [8]) and the aspiration core (Bennett [1]), which are solution concepts
defined for any TU -game. These examples illustrate two basic ways that one has
to restore the balancedness of a game. Namely, either to decrease the value of
intermediate coalitions, or to increase the value of the grand coalition. However,
both procedures share a common feature. Each one of them associates first, to
any given non-balanced game, another balanced game. Then, they define, as the
solution concept for the non-balanced game, the core of the associated balanced
game. In the case of the aspiration core, and for a very specific ε-value in the case
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of the strong ε-core as well, the associated balanced game is a non-orthogonal
projection of the non-balanced game onto the cone of balanced games. In Cesco
[5] we propose a new extension of the core to non-balanced games, the P-core,
by considering orthogonal projections. The resulting procedure associates, to
any non-balanced game, a balanced game where the two aforementioned effects
show up simultaneously, that is, the value of the grand coalition increases while
the value of some intermediate coalitions decrease (with respect to the original
game). Here, we explore some computational procedures to get the projected
game for some particular cases. We expect that the ideas developed in these
procedures will lead to the obtention of a method to get the projected game in
the general case.

2 The cone of balanced games

A TU -game is an ordered pair (N, v) where N = {1, 2, ..., n} is a finite non-
empty set, the set of players, v is the characteristic function, which is a real
valued function defined on the family of subsets of N,P(N) satisfying v(φ) = 0.
The elements in P(N) are the coalitions.

The set of pre-imputations is E = {x = (x1, . . . , xn) ∈ Rn :
∑
i∈N xi =

v(N)}, and the set of imputations is A = {x ∈ E : xi ≥ v({i}) for all i ∈ N}.
Given a pre-imputation x and a coalition S in a game (N, v), the excess of

the coalition S with respect to x is e(S, x) = v(S)−x(S), where x(S) =
∑
i∈S xi

if S 6= φ and 0 otherwise. The core of (N, v) is the set C(N, v) = {x ∈ E :
e(S, x) ≤ 0 for all S ∈ P(N)}.

The core of a game may be the empty set. The Shapley-Bondareva theo-
rem (Bondareva [2], Shapley [7]) characterizes the sub-class of TU -games with
non-empty core. There, the notion of balanced subfamily of coalitions plays
a key role. A non-empty family of coalitions B is a balanced family if there
exists a set of positive numbers λB = (λBS)S∈B, the balancing weights, such
that

∑
S∈B(i)

λBS = 1 for all i ∈ N , where B(i) = {S ∈ B : i ∈ S} . The quantity

w(B, λBS , v) =
∑
S∈B

λBSv(S) is the worth of the balanced family B with respect

to a set of balancing weights λB in a game (N, v). A minimal balanced family
is one including no other proper balanced subfamily, and it has a unique set of
balancing weights (Shapley [7]). In this case, sometimes we will use the simpler
notation w(B, v) for w(B, λBS , v). Let B(N) = {B : B is a balanced family such
that N /∈ B}, andM(N) = {B ∈ B(N) : B is a minimal balanced family}. Then
M(N) = {B : B is a minimal balanced family such that B 6= {N}}.

A game (N, v) is balanced if w(B, λBS , v) ≤ v(N) for all (minimal) balanced
family B with balancing weights λB. Shapley- Bondareva’s theorem states that
the core of a TU−game is non-empty if and only if the game is balanced.

In the rest of the paper we are going to use the following notation. Given
a game (N, v) and B ∈ B(N) (M(N)), ∆(B, λB, v) (∆(B, v)) will stand for
w(B, λB, v) − v(N), and ∆(N, v) for w(N, v) − v(N). We also define w(N, v) =
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max{w(B, λB, v) : B ∈ B(N) ∪ {N}}, and Bw(N, v) = {B ∈ M(N) : ∆(B, v) >
0}. Bw(N, v) is the family of all objecting minimal balanced families in (N, v).

Remark 1. Clearly ∆(N, v) ≥ 0, and the game (N, v) is non-balanced if and only
if ∆(N, v) > 0. Also, it is non-balanced if and only if Bw(N, v) 6= φ.

On the other hand, it is well-known that w(N, v) coincides with max{w(B, v) :
B ∈M(N) ∪ {N}}.

Given a family of coalitions B ∈ B(N), and a set λB of balancing weights for

B, let δB,λ
B

be the (2n− 1)-vector with δB,λ
B

(N) = −1, δB,λ
B

(S) = λBS if S ∈ B,
and δB,λ

B
(S) = 0 for any other non-empty coalition S. Whenever B ∈M(N),

we are going to use the simpler notation δB instead of δB,λ
B
, since there is no

confusion regarding the set of balancing weight for B. If B denotes the cone
generated by the family {δB : B ∈ M(N) then, the set of balanced TU -games
Vn = B∗3 where B∗ = {v ∈ R2n−1 : 〈v, δ〉 ≤ 0 for all δ ∈ B} is the polar cone of
B. Here, 〈., .〉 stands for the usual scalar product in R(2n−1). It is well-known that
each generating vector δB determines a (2n−2)-dimensional face of Vn4 (Shapley
[7]).

To end this section, we introduce another extension of the core to non-
balanced games. We define the projected core of (N, v) as the core of the or-
thogonal projection of the game onto Vn. To this end, let (N, vP ) denote the
closest balanced game to a given game (N, v). Namely, (N, vP ) ∈ Vn is such that∥∥vP − v∥∥

2
is minimum, where ‖.‖ , will stand for the Euclidean norm of R(2n−1).

Definition 1. The P -core PC(N, v) of a given game (N, v) is the core of the
associated game (N, vP ).

It is clear that PC(N, v) = C(N, v) whenever (N, v) is balanced, so the
P -core is an extension of the classical core.

Thus, to obtain a point in the core of this projected game of a given non-
balanced game (N, v), two steps have to be solved. First, an optimization prob-
lem to get the closest game (N, vP ) to (V, n) on Vn. Second, the computation
of an imputation in C(N, vP ). The linearly constrained optimization problem to
get (N, vP ) can be stated as:{

min{‖v∗ − v‖2

s.t
〈
v∗, δB

〉
≤ 0 for all B ∈M(N).

(1)

From the Karush-Kuhn-Tucker necessary first order conditions for the prob-
lem (1), we can get some insight about the game (N, vP ) (see Cesco [5]).

Theorem 1. Let a non-balanced game (N, v) be given. Then, there is B∗ ∈
B(N), a set of balancing weights λB

∗
for B∗, and a positive number ε such that

vP = v − εδB∗,λB
∗

.

3 Here we are identifying each game (N, v) with its characteristic function v. Moreover,
since always v(φ) = 0, we can describe this function by a (2n−1)-dimensional vector.

4 The (n−2)-dimensional face determined by δB is the set of all games (N, v) satisfying〈
v, δB

〉
= 0, and

〈
v, δB

∗
〉
≤ 0 for any other B∗ ∈M(N).
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The explicit expression for vP is worth of further analysis. To this end,
given a game (N, v), a family B ∈ B(N) with balancing weights λB, and ε > 0,

let (N, vB,λ
B,ε) be the game whose characteristic function is vB,λ

B,ε = v −
εδB,λ

B
. Clearly, vB,λ

B,ε(S) = v(S) − ελBS if S ∈ B, vB,λB,ε(N) = v(N) + ε,

and vB,λ
B,ε(S) = v(S) otherwise. Thus, in (N, vB,λ

B,ε), show up simultaneously
the two basic effects observed separately in (N, vε) and (N, vB), the auxiliary
balanced games used to define the ε-core and the aspiration core respectively.
Some of the intermediate coalitions, namely, those coalitions in B, decrease their
value, while the grand coalition N increases its value. Of course, this behavior is
shared by (N, vP ). Whenever B ∈ M(N) we will use the simpler notation vB,ε

for vB,λ
B,ε.

The set of the active constraints {B ∈ M(N) :
〈
vP , δB

〉
= 0} at the solution

vP of (1) is related, somehow, to those objecting families in Bw(N, v), as it is
shown in a corollary of the next result, whose proof can be found in Cesco [5]).

Lemma 1. Let (N, v) be a game a non-balanced game, and B ∈ B(N) be such
that ∆(B, λB, v) > 0 for some set λB of balancing weights. Then, for any other
B∗ ∈ B(N), for any ε > 0,

∆(B∗, λB
∗
, vB,ε) = ∆(B∗, λB

∗
, v)− ε(1 +

∑
S∈B∗∩B

λB
∗

S λBS).

Corollary 1. Let (N, v) be a game a non-balanced game, and B ∈ B(N) be such
that ∆(B, λB, v) > 0 for some set λB of balancing weights. Then, for any ε > 0,
if B∗ ∈ B(N) is such that ∆(B∗, λB∗ , v) ≤ 0, ∆(B∗, λB∗ , vB,ε) < 0.

Corollary 2. Let (N, v) be a non-balanced game. If vP = v − εδB,λB for some
B ∈ B(N), a set of balancing weights λB for B, and a positive number ε, then
{B∗ ∈M(N) :

〈
vP , δB

∗〉
= 0} ⊆ Bw(N, v).

3 Obtention of (N, vP ) in some particular cases

In some cases, the optimization problem (1) can be solved in a simple way, by
taking advantage of the characterization for the (n − 2)-dimensional faces of
Vn. In fact, for any B ∈ M(N), and when ε is chosen in an appropriate way,
vB,ε(S) = v − εδB is the orthogonal projection of a non-balanced game (N, v)
onto the (n−2)-dimensional subspace containing the face of Vn determined by B.
The following result concerns with this projection procedure and will be useful
in what follows.

Lemma 2. Let (N, v) be a non-balanced game, and B ∈ B(N) be such that
∆(B, λB, v) > 0 for some set λB of balancing weights. If

ε =
∆(B, λB, v)

1 +
∑
S∈B

(λBS)2
(2)

then, w(B, λB, vB,λB,ε) = vB,λ
B,ε(N).
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Proof. Clearly ε > 0.

w(B, λB, vB,λ
B,ε) =

∑
S∈B

λBSv
B,λBε(S)

=
∑
S∈B

λBS(v(S)− ελBS)

= w(N, v)− v(N) + v(N)− ε
∑
S∈B

(λBS)2

= v(N) +∆(B, λB, v)− ∆(B, λB, v)

1 +
∑
S∈B

(λBS)2

∑
S∈B

(λBS)2

= v(N) +
∆(B, λB, v)

1 +
∑
S∈B

(λBS)2
= vB,λ

B,ε(N).

The following result gives a simple solution of the problem (1) when a coali-
tion exhibits some kind of ”dominant” position (see Cesco [5]).

Proposition 1. Let (N, v) be a game a non-balanced game, B ∈ Bw(N, v)
and ε given by (2). If for any other B∗ ∈ M(N), w(B∗, λB∗ , v) − v(N) ≤
ε(1 +

∑
S∈B∗∩B

λB
∗

S λBS), then (N, vB,ε) is a balanced game belonging to the (n− 2)-

dimensional face determined by δB.

A particular simple case of Proposition 1 is when Bw(N, v) contains only one
element.

Corollary 3. Let (N, v) be a game, and such that Bw(N, v) = {B}. If ε is given
by (2), the game (N, vB,ε) coincides with (N, vP ).

4 Other approaches to compute vP

In this section we deal with a case where the condition stated in Proposition 1
is not satisfied. We think that the approaches we use to solve it could be useful
to learn how to tackle the general case. We propose two alternative methods to
obtain vP . The first one is an algebraic method while the second is a geometric
one. We start with the following auxiliary result.

Lemma 3. Let (N, v) be a game, and B ∈ Bw(N, v) be such that w(B, λB, v) =
w(N, v). Also, let B∗ ∈ Bw(N, v) with w(B∗, λB∗v)−v(N) > ε(1+

∑
S∈B∗∩B

λB
∗

S λBS),

where ε is given by (2). Then,∑
S∈B

(λBS)2 >
∑

S∈B∗∩B
λB
∗

S λBS .
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Proof. Taking into account the definition of ε, clearly the balancing weights of
B∗ satisfy the following inequalities:

∆(N, v)

1 +
∑

S∈B∗∩B
λB
∗

S λBS

1 +
∑
S∈B

(λBS)2
< w(B∗, λB

∗
, v)− v(N)

≤ ∆(N, v).

Therefore, it must hold that

1 +
∑

S∈B∗∩B
λB
∗

S λBS

1 +
∑
S∈B

(λBS)2
< 1. (3)

But, from (3) we easily get that∑
S∈B

(λBS)2 >
∑

S∈B∗∩B
λB
∗

S λBS .

The preceding lemma allows us to extend, somehow, Corollary 3. In what
follows, we will consider λB

1

(and similarly λB
2

) as a (2n−1)-dimensional vector
whose entries are indexed by the coalitions in P(N). Moreover, the value of any

entry indexd by a coalition S ∈ B1 will be λB
1

S , and 0 otherwise. With this

convention in mind,
∥∥λB∥∥2 =

∑
S∈B

(λBS)2 and
〈
λB

1

S , λB
2

S

〉
=

∑
S∈B1∩B2

λB
1

S λB
2

S .

Theorem 2. Let (N, v) be a game. If Bw(N, v) = {B1,B2}, and B1 is such
w(B1, v) = w(N, v) > w(B2, v). If

1) w(B2, λB2

, v) − v(N) > ε1(1 +
∑

S∈B1∩B2

λB
1

S λB
2

S ), with ε1 = ∆(B1,v)

1+
∑

S∈B1
(λB

1
S )2

,

and
2) w(B1, λB1

, v) − v(N) > ε2(1 +
∑

S∈B1∩B2

λB
1

S λB
2

S ), with ε2 = ∆(B2,v)

1+
∑

S∈B1
(λB

2
S )2

then vP = v−ε
∑

i={1,2}

εi
ε1+ε2

δB
i

, where ε1 and ε2 and ε0 = 1
εare positive numbers

satisfying the linear system
∆(B1, v)ε0 −

∥∥∥λB1
∥∥∥2 ε1 − 〈λB1

, λB
2
〉
ε2 = 1

∆(B2, v)ε0 −
〈
λB

1

, λB
2
〉
ε1 −

∥∥∥λB2
∥∥∥2 ε2 = 1

ε1 + ε2 = 1,

(4)

Proof. During the proof, ∆1 will stand for ∆(B1, v), and ∆2 will stand for
∆(B2, v). We claim that the linear system (4) has only one solution. Indeed,
the discriminant of (4) is

∆ = ∆1(
∥∥∥λB2

∥∥∥2 − 〈λB1

, λB
2
〉

) +∆2(
∥∥∥λB1

∥∥∥2 − 〈λB1

, λB
2
〉

).
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If ∆ ≤ 0, we would get that

−∆2(
∥∥∥λB1

∥∥∥2 − 〈λB1

, λB
2
〉

) = −∆2(1 +
∥∥∥λB1

∥∥∥2 − (1 +
〈
λB

1

, λB
2
〉

))

≥ ∆1(1 +
∥∥∥λB2

∥∥∥2 − (1 +
〈
λB

1

, λB
2
〉

)).

But now, by using the hypotesis 1) and 2), we would also get that

(∆1 +∆2)(1 +
〈
λB

1

, λB
2
〉

) ≥ ∆1(1 +
∥∥∥λB2

∥∥∥2) +∆2(1 +
∥∥∥λB1

∥∥∥2)

> ∆2(1 +
〈
λB

1

, λB
2
〉

) +∆1(1 +
〈
λB

1

, λB
2
〉

)

= (∆1 +∆2)(1 +
〈
λB

1

, λB
2
〉

),

a contradiction. Therefore, ∆ > 0, and the unique solution of (4) will allow us
to compute the numbers ε1, ε2 and ε = 1

ε0
. We will show that this solution is a

positive one.

By Cramer’s rule, ε0 =
∆ε0

∆ , where

∆ε0 =
∥∥∥λB1

∥∥∥2 +
∥∥∥λB2

∥∥∥2 − 2
〈
λB

1

, λB
2
〉

+
∥∥∥λB1

∥∥∥2 ∥∥∥λB2
∥∥∥2 − 〈λB1

, λB
2
〉2

= (
∥∥∥λB1

∥∥∥− ∥∥λB2∥∥)2 +
∥∥∥λB1

∥∥∥2 ∥∥∥λB2
∥∥∥2 − 〈λB1

, λB
2
〉2
,

which is also a positive number because of Hölder’s inequality and the fact that
λB

1

and λB
2

are linearly independent vectors . Then, ε0 turns to be a positive
number, and so it is ε = 1

ε0
.

Also by Cramer’s rule, ε1 =
∆ε1

∆ and ε2 =
∆ε2

∆ . But

∆ε1 = (∆1 −A2) +∆1

∥∥∥λB1
∥∥∥2 −∆2

〈
λB

1

, λB
2
〉

(∆1 −A2) +∆2(
∥∥∥λB1

∥∥∥2 − 〈λB1

, λB
2
〉

)

> 0

since ∆1 −A2 > 0 and
∥∥∥λB1

∥∥∥2 − 〈λB1

, λB
2
〉
≥ 0 because of Lemma 3.

On the other hand,

∆ε2 = −∆1(1 +
〈
λB

1

, λB
2
〉

) +A2(1 +
∥∥∥λB1

∥∥∥2)

is also a positive number because of condition 1). Therefore, ε, ε1 and ε2 are
positive numbers.

Now, we are going to prove that (N, vP ) coincides with (N, vB,λ
B,ε). We point

out that (N, vB,λ
B,ε) ∈ Vn. In fact, since ε1, ε2 and ε0 = 1

ε satisfy system (4),
we get that

∆(B1, v)− ε(ε1
∥∥∥λB1

∥∥∥2 +
〈
λB

1

, λB
2
〉
ε2) = ε.
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But now, taking into account that

w(B1, λB
1

, vB,λ
B,ε) = w(B1, v)− ε(ε1

∑
S∈B1

(λB
1

S )2 + ε2
∑

S∈B1∩B2

λB
1

S λB
2

S ),

and that ∆(B1, v) = w(B1, v)− v(N) we get that

w(B1, λB
1

, vB,λ
B,ε) = v(N) + ε

= vB,λ
B,ε

Similarly, we get that

w(B1, λB
1

, vB,λ
B,ε) = vB,λ

B,ε

too. On the other hand, because of Corollary 1, we have that w(B∗, λB∗ , vB,λB,ε) ≤
vB,λ

B,ε and for any other B∗ ∈M(N), different from B1 and B2. Thus, our claim

follows from the Shapley-Bondareva Theorem. Finally, to show that (N, vB,λ
B,ε) =

(N, vP ), we note that, for any (N, v∗) ∈ Vn,〈
v − vB,λ

B,ε, v∗ − vB,λ
B,ε
〉

=
〈
εδB,λ

B
, v∗ − vB,λ

B,ε
〉

=
〈
εδB,λ

B
, v∗
〉

= ε(ε1

〈
δB

1

, v∗
〉

+ ε2

〈
δB

1

, v∗
〉

)

≤ 0,

which is a condition that guarantees that (N, vB,λ
B,ε) is the closest game in Vn

to the given non-balanced game (N, v).

Remark 2. Conditions 1) and 2) in Theorem 2 rule out the cases in which (N, vP )

is the projection of (N, v) onto the faces determined by δB
1

or δB
2

, in which cases
(N, vP ) is obtained in a more direct way.

We now turn our attention to the second method. We start with the non-
balanced game (N, v), and we assume, as before, that Bw(N, v) = {B1,B2}. Then

we construct the game (N, vB
1,ε1) as the projection of (N, v) onto Vn following

the direction of δB
1

. Let us call this game (N, v1). Clearly this game satisfies
∆(B1, v1) = 0. If ∆(B2, v1) ≤ 0, then (N, v1) = (N, vP ) and we are done. If this

is not the case, ∆(B2, v1) > 0 and we construct the game (N, v1B
2,ε2) as the

projection of (N, v1) onto Vn following the direction of δB
2

. Let us call this new
game (N, v2). It satisfies that ∆(B2, v2) = 0, and ∆(B1, v2) < 0.

We now repeat the process, also starting from (N, v) but now, reversing the
order of the projections. We first construct the game (N, v2), and if (N, v2) 6=
(N, vP ), we then construct the game (N, v1). In general, (N, v1) 6= (N, v2).
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Clearly (N, v2) satisfies ∆(B2, v2) = 0, and ∆(B1, v2) > 0 and (N, v1) satis-
fies ∆(B1, v1) = 0, and ∆(B2, v1) < 0.

We now construct the game (N, vµ) with vµ = µv1 + (1− µ)v1. Since

w(B2, vµ) =
∑
S∈B2

λB
2

vµ(S)

=
∑
S∈B2

λB
2

(µv1(S) + (1− µ)v1(S))

= µw(B2, v1) + (1− µ)w(B2, v1),

and
vµ(N) = µv1(N) + (1− µ)v1(N),

we conclude that

∆(B2, vµ) = µ∆(B2, v1) + (1− µ)∆(B2, v1). (5)

Similarly,

∆(B1, vµ) = µ∆(B1, v1) + (1− µ)∆(B1, v1). (6)

From (6), and the fact that ∆(B1, v1) = ∆(B1, v1) = 0, we get that, for any
µ,∆(B1, vµ) = 0. On the other hand, since ∆(B2, v1) > 0, and ∆(B2, v1) < 0,
there is a unique 0 < µ∗ < 1 for which ∆(B2, vµ) = 0 too. We claim that
(N, vµ

∗
) = (N, vP ). To see this, we first note that

vµ
∗

= µ∗(v − ε1δB
1

) + (1− µ∗)(v − ε2δB
2

− ε1δB
1

)

= v − (µ∗ε1 + (1− µ∗)ε1)δB
1

+ (1− µ∗)ε2δB
2

).

Since both µ∗ε1 + (1−µ∗)ε1 and (1−µ∗)ε2 turn to be positive numbers, we can
put that

vµ
∗

= v − ε∗δB,λ
B

= vB,λ
B,ε∗ ,

where B = B1 ∪ B2,

ε∗ = (µ∗ε1 + (1− µ∗)ε1) + (1− µ∗)ε2,

and

λB =
(µ∗ε1 + (1− µ∗)ε1)

ε∗
λB

1

+
(1− µ∗)ε2)

ε∗
λB

2

.

Therefore, according to Corollary 1 (note that∆(B, λB, v) > 0), ∆(B∗, vB,λB,ε∗) <
0 for any other B∗ ∈M(N),B∗ 6= B1,B2. This proves that (N, vB,λ

B,ε∗) belongs

to Vn, more precisely, to the face determined by δB
1

and δB
1

. Moreover, since
as before, for any v∗ ∈ Vn, we get that〈

v − vB,λ
B,ε∗ , v∗ − vB,λ

B,ε∗
〉

=
〈
ε∗δB,λ

B
, v∗ − vB,λ

B,ε∗
〉

≤ 0,

we have that (N, vB,λ
B,ε∗) = (N, vP ).
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5 Final remarks

The linear system first (4) related to the fist method presented in Section 3 can
be easily genealized to the case that Bw(N, v) = {B1, ...,Bk}. However, we do
no have yet a general condition guaranteeing the non-negativity of its solution.
However, in the case that we were able to get, in advance, the family {B∗ ∈
M(N) :

〈
vP , δB

∗〉
= 0} related to the active constraints at vP , the existence and

the non-negativity of the solution could be assured by the Kruskal-Kuhn-Tucker
conditions of (1). Thus, our attention now is focused in developing a practical
procedure to find the set {B∗ ∈ M(N) :

〈
vP , δB

∗〉
= 0}. The second method

presented in Section 3 provides, in the particular case worked there, a way to
find the required set. To this end, we have to consider successive orthogonal
projections of the type indicated in Lemma 2. The idea behind this particular
case motivate us to propose a general algorithmic version, in the form of a pseudo-
code. At each step, only one new objecting family is brought into consideration,
and the associated orthogonal projection is obtained. The final result for any
given game (N, v), is (N, v̄P ). We call this procedure, the P -procedure which is
defined in the following pseudo-code.

Data: A game (N, v).
Result: (N, v̄P ).

1. Let (N, v∗) = (N, v) and LB = φ
2. Is (N, v∗) ∈ Vn? If YES, (N, v∗) = (N, v̄P ) and go to end. Else find an

objecting minimal balanced family B and let LB = LB ∪ {B}.
3. Let (N, v∗) = (N, v∗B,λ

B,εB) with εB = ∆(B,v∗)
1+

∑
S∈B

(λBS)2
.

4. Is (N, v∗) ∈ Vn? If YES, (N, v∗) = (N, v̄P ) and go to end. Else find an
objecting minimal balanced family B and let LB = LB ∪ {B}.

5. Go to Step 3.

Steps 3 and 4 are the key steps in the P -procedure. We now give the way
we practically solve Step 4. We mention that at each Step 4, until the end, LB
always incorporates a new minimal balanced family, different from all the others
taken into account in the previous steps. This will guarantee the ending of the
algorithm in a finite number of steps.

5.1 About Step 4

To go round Step 4 we use an algorithm developed by Cesco [3], originally
designed to compute a core-imputation of a balanced game (N, v). However,
if the game is a non-balanced one, the final result of the algorithm is a finite
sequence ((xi, Si))m+1

i=1 , where, for each i, xi is a pre-imputation and Si is a

coalition with e(Si, xi) = 0. Moreover, Sm+1 = S1, and
∥∥xm+1 − x1

∥∥2
2
≤ tol,

where tol stands for the machine tolerance number. Namely, the final result of
the algorithm is almost a cycle. We conjecture that it should ”converge” to a
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true cycle, but we have been able to prove this fact only in some particular
cases. However, the interesting point is that the family of coalitions (Si)mi=1

is a balanced one, and a set of balancing weights λ for it can be computed
very closely in terms of the family of pre-imputations (xi)mi=1 (Cesco [4]). Two
other important properties have shown up during several simulation exercises,
although we do not have formal proof, except for some particular situations.
First, the family of coalitions has maximal worth (within the limits that the
machine precision imposes). Second, it is a minimal balanced family. If this were
not the case, an additional procedure can extract a minimal subfamily. And if this
minimal family does not have maximal worth, a finite sequence of applications of
the aforementioned two procedures will lead to a maximal worth balanced family
of coalitions. It is worth mentioning that we have theoretic results supporting
the use of approximate cycles instead of true cycles (Cesco [6]).
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